Skip to main content
Log in

Multiple Signal Transduction Pathways Regulate Ovarian Steroidogenesis

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev 2000;21:200–214.

    Google Scholar 

  2. Stocco DM, Clark BJ. Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev 1996;17:221–244.

    Google Scholar 

  3. Devoto L, Vega M, Kohen P, Castro A, Castro O, Christenson LK, Carvallo P, Strauss JF, III. Endocrine and paracrine-autocrine regulation of the human corpus luteum during the mid-luteal phase. J Reprod Fertil Suppl 2000;55:13–20.

    Google Scholar 

  4. Mahesh VB, Braun DW. Regulation of the preovulatory gonadotropin surge by endogenous steroids. Steroids 1998;63:616–629.

    Google Scholar 

  5. Chryssikopoulos A. The potential role of intraovarian factors on ovarian androgen production. Ann NY Acad Sci 2000;900:184–192.

    Google Scholar 

  6. Fauser BC, Van Heusden AM. Manipulation of human ovarian function: physiological concepts and clinical consequences. Endocr Rev 1997;18:71–106.

    Google Scholar 

  7. Vendola KA, Zhou J, Adesanya OO, Weil SJ, Bondy CA. Androgens stimulate early stages of follicular growth in the primate ovary. J Clin Invest 1998;101:2622–2629.

    Google Scholar 

  8. Yong EL, Baird DT, Yates R, Reichert, LE Jr, Hillier SG. Hormonal regulation of the growth and steroidogenic function of human granulosa cells. J Clin Endocrinol Metab 1992;74:842–849.

    Google Scholar 

  9. Reaven E, Tsai L, Azhar S. Intracellular events in the "selective" transport of lipoprotein-derived cholesteryl esters. J Biol Chem 1996;271:16208–16217.

    Google Scholar 

  10. Suauss JF, III, Paavola LG, Rosenblum MF, Tanaka T, Gwynne JT. Utilization of lipoprotein-carried cholesterol for steroidogenesis by rat luteal tissue. In: Regulation of Target Cell Responsiveness. Plenum Publishing Corporation, 1984: 361–390.

  11. Strauss JF, III, Kallen CB, Christenson LK, Watari H, Devoto L, Arakane F, Kiriakidou M, Sugawara T. The steroidogenic acute regulatory protein (StAR): a window into the complexities of intracellular cholesterol trafficking. Recent Prog Horm Res 1999;54:369–394.

    Google Scholar 

  12. Stocco DM. StAR protein and the regulation of steroid hormone biosynthesis. Annu Rev Physiol 2001;63:193–213.

    Google Scholar 

  13. Christenson LK, Strauss JF, III. Steroidogenic acute regulatory protein (SEAR) and the intramitochondrial translocation of cholesterol. Biochim Biophys Acta 2000;1529:175–187.

    Google Scholar 

  14. Miller WL. Molecular biology of steroid hormone synthesis. Endocr Rev 1988;9:295–318.

    Google Scholar 

  15. Hanukoglu J. Steroidogenic enzymes: Structure, function, and role in regulation of steroid hormone biosynthesis. J Steroid Biochem Malec Biol 1992;43:779–804.

    Google Scholar 

  16. Penning TM. Molecular endocrinology of hydroxysteroid dehydrogenases. Endocr Rev 1997;18:281–305.

    Google Scholar 

  17. Richards JS. New signaling pathways for hormones and cyclic adenosine 3',5'-monophosphate action in endocrine cells. Mol Endocrinol 2001;15:209–218.

    Google Scholar 

  18. Richards JS. Perspective: The ovarian follicle-a perspective in 2001. Endocrinology 2001;142:2184–2193.

    Google Scholar 

  19. Amsterdam A, Gold RS, Hosokawa K, Yoshida Y, Sasson R, Jung Y, Kotsuji P. Crosstalk among multiple signaling pathways controlling ovarian cell death. Trends Endocrinol Metab 1999;10:255–262.

    Google Scholar 

  20. Yong EL, Hillier SG, Turner M, Baird DT, Ng SC, Bongso A, Ratnam SS. Differential regulation of cholesterol side-chain cleavage (P450SCC) and aromatase (P450arom) enzyme mRNA expression by gonadotrophins and cyclic AMP in human granulosa cells. J Mol Endocrinol 1994;12:239–249.

    Google Scholar 

  21. Leung PC, Steele GL. Intracellular signaling in the gonads. Endocr Rev 1992;13:476–498.

    Google Scholar 

  22. Richards JS, Fitzpatrick SL, Clemens JW, Morris JK, Alliston T, Sirois J. Ovarian cell differentiation: A cascade of multiple hormones, cellular signals, and regulated genes. Recent Prog Horm Res 1995;50:223–254.

    Google Scholar 

  23. Moley KH, Schreiber JR. Ovarian follicular growth, ovulation and atresia. Endocrine, paracrine and autocrine regulation. Adv Exp Med Biol 1995;377:103–119.

    Google Scholar 

  24. Simoni M, Gromoll J, Nieschlag E. The follicle-stimulating hormone receptor: Biochemistry, molecular biology, physiology, and pathophysiology. Endocr Rev 1997;18:739–773.

    Google Scholar 

  25. Christenson LK, Johnson PF, McAllister IM, Strauss JF, III. CCAAT/enhance-binding proteins regulate expression of the human steroidogenic acute regulatory protein (StAR) gene. J Biol Chem 1999;274:26591–26598.

    Google Scholar 

  26. Sugawara T, Holt JA, Kiriakidou M, Strauss JF, III. Steroidogenic factor 1-dependent promoter activity of the human steroidogenic acute regulatory protein (StAR) gene. Biochemistry 1996;35:9052–9059.

    Google Scholar 

  27. Sugawara T, Kiriakidou M, McAllister JM, Holt JA, Arakane E, Strauss JF, III. Regulation of expression of the steroidogenic acute regulatory protein (StAR) gene: a central role for steroidogenic factor 1. Steroids 1997;62:5–9.

    Google Scholar 

  28. Arakane E, King SR, Du Y, Kallen CB, Walsh LP, Watari H, Stocco DM, Strauss JF, III. Phosphorylation of steroidogenic acute regulatory protein (StAR) modulates its steroidogenic activity. J Biol Chem 1997;272:32656–32662.

    Google Scholar 

  29. Christenson LK, Stouffer RL, Strauss JF III. Quantitative analysis of the hormone-induced hyperacetylation of histone H3 associated with the steroidogenic acute regulatory protein gene promoter. J Biol Chem 2001;276:27392–27399.

    Google Scholar 

  30. Touyz RM, Jiang L, and Sairam MR. Follicle-stimulating hormone mediated calcium signaling by the alternatively spliced growth factor type I receptor. Biol Reprod 2000;62:1067–1074.

    Google Scholar 

  31. Balm PS, Krishnamurthy H, Chedrese PJ, Sairam MR. Activation of extracellular-regulated kinase pathways in ovarian granulosa cells by the novel growth factor type 1 follicle-stimulating hormone receptor. Role in hormone signaling and cell proliferation. J Biol Chem 2000;275:27615–27626.

    Google Scholar 

  32. Nishimori K, Dunkel L, Hsueh AJ, Yamoto M, Nakano R. Expression of luteinizing hormone and chorionic gonadofropin receptor messenger ribonucleic acid in human corpora lutea during menstrual cycle and pregnancy. J Clin Endocrinol Metab 1995;80:1444–1448.

    Google Scholar 

  33. Kawate N, Okuda K. Coordinated expression of splice variants for luteinizing hormone receptor messenger RNA during the development of bovine corpora lutea. Mol Reprod Dev 1998;51:66–75.

    Google Scholar 

  34. Bacich DJ, Rohan RM, Norman RJ, Rodgers RJ. Characterization and relative abundance of alternatively spliced luteinizing hormone receptor messenger ribonucleic acid in the ovine ovary. Endocrinology 1994;135:735–744.

    Google Scholar 

  35. Aatsinki JT, Pietila EM, Lakkakorpi JT, Rajaniemi HJ. Expression of the LH/CG receptor gene in rat ovarian tissueis regulated by an extensive alternative splicing of the primary transcript. Mol Cell Endocrinol 1992;84:127–135.

    Google Scholar 

  36. Herrlich A, Kuhn B, Grosse R, Schmid A, Schultz G, Gudermann T. Involvement of Gs and Gi proteins in dual coupling of the luteinizing hormone receptor to adenylyl cyclase and phospholipase C. J Biol Chem 1996;271:16764–16772.

    Google Scholar 

  37. Kuhn B, Gudermann T. The luteinizing hormone receptor activates phospholipase C via preferential coupling to Gig. Biochemistry 1999;38:12490–12498.

    Google Scholar 

  38. Flores JA, Aguirre C, Sharma OP, Veldhuis JD. Luteinizing hormone (LH) stimulates both intracellular calcium ion ([Ca2+]i) mobilization and transmembrane cation influx in single ovarian (granulosa) cells: Recruitment as a cellular mechanism of LH[Ca2+]i doseresponse. Endocrinology 1998;139:3606–3612.

    Google Scholar 

  39. Quintana J, Hipkin RW, Sanchez-Yague J, Ascoli M. Follitropin (FSH) and a phorbol ester stimulate the phosphorylation of the FSH receptor in intact cells. J Biol Chem 1994;269:8772–8779.

    Google Scholar 

  40. Maizels ET, Cottons J, Jones IC, Hunzicker-Dune M. Follicle stimulating hormone (FSH) activates the p38 mitogen-activated protein kinase pathway, inducing small heat shock protein phosphorylation and cell rounding in immature rat ovarian granulosa cells. Endocrinology 1998;139:3353–3356.

    Google Scholar 

  41. Maizels ET, Mukherjee A, Sithanandam G, Peters CA, Cottons J, Mayo KE, Hunzicker-Dune M. Developmental regulation of mitogen-activated protein kinase-activated kinases-2 and-3 (MAPKAPK-2/-3) in vivo during corpus luteum formation in the rat. Mol Endocrinol 2001;15:716–733.

    Google Scholar 

  42. Alliston TN, Maiyar AC, Buse P, Firestone GL, Richards JS. Follicle stimulating hormone-regulated expression of serum/glucocorticoid-inducible kinase in rat ovarian granulosa cells: A functional role for the Spl family in promoter activity. Mol Endocrinol 1997;11:1934–1949.

    Google Scholar 

  43. Alliston TN, Gonzalez-Robayna IJ, Buse P, Firestone GL, Richards JS. Expression and localization of serum/glucocorticoid-induced kinase in the rat ovary: Relation to follicular growth and differentiation. Endocrinology 2000;141:385–395.

    Google Scholar 

  44. Gonzalez-Robayna IJ, Falender AE, Ochsner S, Firestone GL, Richards JS. Follicle-stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-induced kinase (Sgk): Evidence for A kinase-independent signaling by FSH in granulosa cells. Mol Endocrinol 2000;14:1283–1300.

    Google Scholar 

  45. Seger R, Hanoch T, Rosenberg R, Dantes A, Merz WE, Strauss JF, III, Amsterdam A. The ERK signaling cascade inhibits gonadotropin-stimulated steroidogenesis. J Biol Chem 2001;276:13957–13964.

    Google Scholar 

  46. Gyles SL, Burrs CJ, Whitehouse BI, Sugden D, Marsh PI, Persaud ST, Jones PM. ERKs regulate cyclic AMP-induced steroid synthesis through transcription of the steroidogenic acute regulatory (StAR) gene. J Biol Chem 2001;15:15.

    Google Scholar 

  47. Cameron MR, Foster JS, Bukovsky A, Wimalasena J. Activation of mitogen-activated protein kinases by gonadotropins and cyclic adenosine 5'-monophosphates in porcine granulosa cells. Biol Reprod 1996;55:111–119.

    Google Scholar 

  48. Ascoli M. Functional consequences of the phosphorylation of the gonadotropin receptors. Biochem Pharmacol 1996;52:1647–1655.

    Google Scholar 

  49. Troispoux C, Guillou E, Elalouf JM, Firsov D, Iacovelli L, De Blasi A, Combamous Y, Reiter E. Involvement of G protein-coupled receptor kinases and arrestins in desensitization to follicle-stimulating hormone action. Mol Endocrinol 1999;13:1599–1614.

    Google Scholar 

  50. Lazari MF, Bertrand JE, Nakamura K, Liu X, Krupnick JG, Benovic JL, Ascoli M. Mutation of individual serine residues in the C-terminal tail of the lutropin/choriogonadotropin receptor reveal distinct structural requirements for agonist-induced uncoupling and agonist-induced internalization. J Biol Chem 1998;273:18316–18324.

    Google Scholar 

  51. Mukherjee S, Palczewski K, Gurevich V, Benovic JL, Banga JP, Hunzicker-Dune M. A direct role for arrestins in desensitization of the luteinizing hormone/choriogonadouopin receptor in porcine ovarian follicular membranes. Proc Natl Acad Sci USA 1999;96:493–498.

    Google Scholar 

  52. Mukherjee S, Casanova JE, Hunzicker-Dune M. Desensitization of the luteinizing hormone/choriogonadouopin receptor in ovarian follicular membranes is inhibited by catalytically inactive ARNO(+). J Biol Chem 2001;276:6524–6528.

    Google Scholar 

  53. Pierce KL, Luttrell LM, Lefkowitz RJ. New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 2001;20:1532–1539.

    Google Scholar 

  54. McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT, Davis RI, Lefkowitz RJ. ß-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 2000;290:1574–1577.

    Google Scholar 

  55. Maudsley S, Pierce KL, Zamah AM, Miller WE, Ann S, Daaka Y, Lefkowitz RJ, Luttrell LM. The ß(2)-adrenergic receptor mediates extracellular signal-regulated kinase activation via assembly of a multi-receptor complex with the epidermal growth factor receptor. J Biol Chem 2000;275:9572–9580.

    Google Scholar 

  56. Poretsky L, Cataldo NA, Rosenwaks Z, Giudice LC. The insulin-related ovarian regulatory system in health and disease. Endocr Rev 1999;20:535–582.

    Google Scholar 

  57. Franks S, Gilling-Smith C, Watson H, Willis D. Insulin action in the normal and polycystic ovary. Endocrinol Metab Clin North Am 1999;28:361–378.

    Google Scholar 

  58. Sekar N, Garmey JC, Veldhuis JD. Mechanisms underlying the steroidogenic synergy of insulin and luteinizing hormone in porcine granulosa cells: joint amplification of pivotal sterol-regulatory genes encoding the low-density lipoprotein (LDL) receptor, steroidogenic acute regulatory (STAR) protein and cytochrome P450 side-chain cleavage (P450scc) enzyme. Mol Cell Endocrinol 2000;159:25–35.

    Google Scholar 

  59. Mamluk R, Greber Y, Meidan R. Hormonal regulation of messenger ribonucleic acid expression for steroidogenic factor-1, steroidogenic acute regulatory protein, and cytochrome P450 side-chain cleavage in bovine luteal cells. Biol Reprod 1999;60:628–634.

    Google Scholar 

  60. Devoto L, Christenson LK, McAllister JM, Makrigiannakis A, Strauss JF, III. Insulin and insulin-like growth factor-I and-II modulate human granulosa-lutein cell steroidogenesis: Enhancement of steroidogenic acute regulatory protein (StAR) expression. Mol Hum Reprod 1999;5:1003–1010.

    Google Scholar 

  61. Sekar N, Veldhuis JD. Concerted transcriptional activation of the low density lipoprotein receptor gene by insulin and luteinizing hormone in cultured porcine granulosa-luteal cells: possible convergence of protein kinase A, phosphatidylinositol 3-kinase, and mitogen-activated protein kinase signaling pathways. Endocrinology 2001;142:2921–2928.

    Google Scholar 

  62. Zhang G, Garmey JC, Veldhuis JD. Interactive stimulation by luteinizing hormone and insulin of the steroidogenic acute regulatory (StAR) protein and 17alpha-hydroxylase/17,20-lyase (CYP17) genes in porcine theca cells. Endocrinology 2000;141:2735–2742.

    Google Scholar 

  63. Willis D, Franks S. Insulin action in human granulosa cells from normal and polycystic ovaries is mediated by the insulin receptor and not the type-I insulin-like growth factor receptor. J Clin Endocrinol Metab 1995;80:3788–3790.

    Google Scholar 

  64. Blakesley VA, Scrimgeour A, Esposito D, Le Roith D. Signaling via the insulin-like growth factor-I receptor: Does it differ from insulin receptor signaling? Cytokine Growth Factor Rev 1996;7:153–159.

    Google Scholar 

  65. Dunaif A, Segal KR, Shelley DR, Green G, Dobrjansky A, Licholai T. Evidence for distinctive and intrinsic defects in insulin action in polycystic ovary syndrome. Diabetes 1992;41:1257–1266.

    Google Scholar 

  66. Dunaif A. Insulin action in the polycystic ovary syndrome. Endocrinol Metab Clin North Am 1999;28:341–359.

    Google Scholar 

  67. Poretsky L, Seto-Young D, Shrestha A, Dhillon S, Mirjany M, Liu HC, Yin MC, Rosenwaks Z. Phosphatidyl-inositol-3 kinaseindependent insulin action pathway(s) in the human ovary. J Clin Endocrinol Metab 2001;86:3115–3119.

    Google Scholar 

  68. Nestler JE, Jakubowicz DJ, de Vargas AF, Erik C, Quintero N, Medina F. Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J Clin Endocrinol Metab 1998;83:2001–2005.

    Google Scholar 

  69. Giudice LC. Insulin-like growth factor family in Graafian follicle development and function. J Soc Gynecol Investig 2001;8:S26–S29.

    Google Scholar 

  70. deMoma MD, Choi D, Adashi EY, Payne DW. Insulin-like growth factor-I-mediated amplification of follicle-stimulating hormone-supported progesterone accumulation by cultured rat granulosa cells: Enhancement of steroidogenic enzyme activity and expression. Biol Reprod 1997;56:946–953.

    Google Scholar 

  71. Hirakawa T, Minegishi T, Abe K, Kishi H, Ibuki Y, Miyamoto K. A role of insulin-like growth factor I in luteinizing hormone receptor expression in granulosa cells. Endocrinology 1999;140:4965–4971.

    Google Scholar 

  72. Talavera F, Chen Z, Menon KM. IRS-I expression on the luteinized rat ovary: IGF-I and cyclic AMP effects on IRS-I tyrosine phosphorylation. Biochim Biophys Acta 1996;1310:10–18.

    Google Scholar 

  73. Duan C, Liimatta MB, Bottom OL. Insulin-like growth factor (IGF)-I regulates IGF-binding protein-5 gene expression through the phosphatidylinositol 3-kinase, protein kinase B/Akt, and p70 S6 kinase signaling pathway. J Biol Chem 1999;274:37147–37153.

    Google Scholar 

  74. Balasubramanian K, Lavoie HA, Garmey JC, Stocco DM, Veldhuis JD. Regulation of porcine granulosa cell steroidogenic acute regulatory protein (SEAR) by insulin-like growth factor I: Synergism with follicle-stimulating hormone or protein kinase A agonist. Endocrinology 1997;138:433–439.

    Google Scholar 

  75. LaVoie HA, Garmey JC, Veldhuis JD. Mechanisms of insufln like growth factor I augmentation of follicle-stimulating hormone-induced porcine steroidogenic acute regulatory protein gene promoter activity in granulosa cells. Endocrinology 1999;140:146–153.

    Google Scholar 

  76. Tonetta SA, diZerega GS. Intragonadal regulation of follicular maturation. Endocr Rev 1989;10:205–229.

    Google Scholar 

  77. Pescador N, Stocco DM, Murphy BD. Growth factor modulation of steroidogenic acute regulatory protein and luteinization in the pig ovary. Biol Reprod 1999;60:1453–1461.

    Google Scholar 

  78. Misajon A, Hutchinson P, Lolatgis N, Trounson AO, Almahbobi G. The mechanism of action of epidermal growth factor and transforming growth factor alpha on aromatase activity in granulosa cells from polycystic ovaries. Mol Hum Reprod 1999;5:96–103.

    Google Scholar 

  79. Murray IF, Downing JA, Evans G, Findlay JK, Scammuzzi RJ. Epidermal growth factor acts directly on the sheep ovary in vivo to inhibit oesuadiol-17 ß and inhibin secretion and enhance progesterone secretion. J Endocrinol 1993;137:253–264.

    Google Scholar 

  80. Li Z, Johnson AL. Regulation of P450 cholesterol side-chain cleavage messenger ribonucleic acid expression and progesterone production in hen granulosa cells. Biol Reprod 1993;49:463–469.

    Google Scholar 

  81. Haynes-Johnson D, Lai MT, Campen C, Palmer S. Diverse effects of tyrosine kinase inhibitors on follicle-stimulating hormone-stimulated estradiol and progesterone production from rat granulosa cells in serum-containing medium and serum-free medium containing epidermal growth factor. Biol Reprod 1999;61:147–153.

    Google Scholar 

  82. Budnik LT, Mukhopadhyay AK. Modulatory action of epidermal growth factor on differentiated human granulosa lutein cells: Cross-talk between ligand activated receptors for EGF and gonadotropin. Mol Cell Endocrinol 1996;124:141–150.

    Google Scholar 

  83. Tamara M, Sasano H, Suzuki T, Fukaya T, Funayama Y, Takayama K, Takaya R, Yajima A. Expression of epidermal growth factors and epidermal growth factor receptor in normal cycling human ovaries. Hum Reprod 1995;10:1891–1896.

    Google Scholar 

  84. Qu J, Nisolle M, Donnez J. Expression of transforming growth factor-alpha, epidermal growth factor, and epidermal growth factor receptor in follicles of human ovarian tissue before and after cryopreservation. Fertil Steril 2000;74:113–121.

    Google Scholar 

  85. Maruo T, Ladines-Llave CA, Samoto T, Matsuo H, Manalo AS, Ito H, Mochizuki M. Expression of epidermal growth factor and its receptor in the human ovary during follicular growth and regression. Endocrinology 1993;132:924–931.

    Google Scholar 

  86. Carpenter G, Cohen S. Epidermal growth factor. J Biol Chem 1990;265:7709–7712.

    Google Scholar 

  87. Keel BA, Hildebrandt JM, May N, Davis JS. Effects of epidermal growth factor on the tyrosine phosphorylation of mitogenactivated protein kinases in monolayer cultures of porcine granulosa cells. Endocrinology 1995;136:1197–1204.

    Google Scholar 

  88. Lamm ML, Rajagopalan-Gupta RM, Hunzicker-Dune M. Epidermal growth factor-induced heterologous desensitization of the luteinizing hormone/choriogonadotropin receptor in a cell-free membrane preparation is associated with the tyrosine phosphorylation of the epidermal growth factor receptor. Endocrinology 1999;140:29–36.

    Google Scholar 

  89. Gaddy-Kurten D, Tsuchida K, Vale W. Activins and the receptor serine kinase superfamily. Recent Prog Horm Res 1995;50:109–129.

    Google Scholar 

  90. Shimasaki S, Zachow RJ, Li D, Kim H, Iemura S, Ueno N, Sampath K, Chang RJ, Erickson GF. A functional bone morphogenetic protein system in the ovary. Proc Natl Acad Sci USA 1999;96:7282–7287.

    Google Scholar 

  91. May N, Turzcynski CJ, Ramos L, Mau YH. Differential involvement of protein kinase C in the regulation of transforming growth factor-ß (TGP-ß) secretion by porcine theca and granulosa cells in vitro. Endocrinology 1995;136:1319–1322.

    Google Scholar 

  92. Roy SK, Kole AR. Ovarian transforming growth factor-ß (TGP-ß) receptors: In-vitro effects of follicle stimulating hormone, epidermal growth factor and TGP-beta on receptor expression in human preantral follicles. Mol Hum Reprod 1998;4:207–214.

    Google Scholar 

  93. Hernandez ER, Hurwitz A, Payne DW, Dharmarajan AM, Purchio AF, Adashi EY. Transforming growth factor-beta 1 inhibits ovarian androgen production: gene expression, cellular localization, mechanisms(s), and site(s) of action. Endocrinology 1990;127:2804–2811.

    Google Scholar 

  94. Attia GR, Dooley CA, Rainey WE, Carr BR. Transforming growth factor beta inhibits steroidogenic acute regulatory (StAR) protein expression in human ovarian thecal cells. Mol Cell Endocrinol 2000;170:123–129.

    Google Scholar 

  95. Carr BR, McGee FA, Sawetawan C, Clyne CD, Rainey WE. The effect of transforming growth factor-beta on steroidogenesis and expression of key steroidogenic enzymes with a human ovarian thecal-like tumor cell model. Am J Obstet Gynecol 1996;174:1109-1116; discussion 1116–1117.

    Google Scholar 

  96. Brand C, Nury D, Chambaz EM, Feige JJ, Badly S. Transcriptional regulation of the gene encoding the StAR protein in the human adrenocortical cell line, H295R by cAMP and TGFß1. Endocr Res 2000;26:1045–1053.

    Google Scholar 

  97. Itch S, Itch F, Goumans MJ, Ten Dijke P. Signaling of transforming growth factor-ß family members through Smad proteins. Eur J Biochem 2000;267:6954–6967.

    Google Scholar 

  98. Knight PG. Roles ofinhibins, activins, and folli statin in the female reproductive system. Front Neuroendocrinol 1996;17:476–509.

    Google Scholar 

  99. Knight PG, Glister C. Potential local regulatory functions of inhibins, activins and follistatin in the ovary. Reproduction 2001;121:503–512.

    Google Scholar 

  100. Pangas SA, Woodruff TK. Activin signal transduction pathways. Trends Endocrinol Metab 2000;11:309–314.

    Google Scholar 

  101. Lewis KA, Gray PC, Blount AL, MacConell LA, Whiter E, Bilezikjian LM, Vale W. Betaglycan binds inhibin and can mediate functional antagonism of activin signalling. Nature 2000;404:411–414.

    Google Scholar 

  102. Bernard DJ, Woodruff TK. Inhibin binding protein in rats: Alternative transcripts and regulation in the pituitary across the estrous cycle. Mol Endocrinol 2001;15:654–667.

    Google Scholar 

  103. Chapman SC, Woodruff TK. Modulation of activin signal transduction by inhibin B and inhibin-binding protein (InhBP). Mol Endocrinol 2001;15:668–679.

    Google Scholar 

  104. Dooley CA, Attia GR, Rainey WE, Moore DR, Carr BR. Bone morphogenetic protein inhibits ovarian androgen production. J Clin Endocrinol Metab 2000;85:3331–8337.

    Google Scholar 

  105. Otsuka F, Yao Z, Lee T, Yamamoto S, Enckson GF, Shimasaki S. Bone morphogenetic protein-15. Identification of target cells and biological functions. J Biol Chem 2000;275:39523–39528.

    Google Scholar 

  106. Mulsant P, Lecerf F, Fabre S, Schibler L, Monget P, Lanneluc I, Pisselet C, Riguet I, Monniaux D, Callebaut I, Cribiu E, Thimonier J, Teyssier J, Boom L, Cognié Y, Chitowr N, Elsen J-M. Mutation in bone morphogenetic protein receptor-1B is associated with increased ovulation rate in Booroola Merino ewes. Proc Natl Acad Sci USA 2001;98:5104–5109.

    Google Scholar 

  107. Huang HJ, Wu JC, Su P, Zhimov O, Miller WL. A novel role for bone morphogenetic proteins in the synthesis of follicle-stimulating hormone. Endocrinology 2001;142:2275–2283.

    Google Scholar 

  108. Aaltonen J, Laitinen MP, Vuojolainen, K, Jaafinen R, Horelli-Kuitanen N, Seppa L, Luohi H, Thun T, Sjöberg J, Bützow R, Horatta O, Dale L, Rituous O. Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. J Clin Endocrinol Metab 1999;84:2744–2750.

    Google Scholar 

  109. Elvin JA, Yan C, Matzuk MM. Oocyte-expressed TGP-ß superfamily members in female fertility. Mol Cell Endocrinol 2000;159:1–5.

    Google Scholar 

  110. Otsuka P, Moore RK, Shimasaki S. Biological function and cellular mechanism of bone morphogenetic protein-6 in the ovary. J Biol Chem 2001;10:10.

    Google Scholar 

  111. Otsuka F, Yamamoto S, Erickson GF, Shimasaki S. Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. J Biol Chem 2001;276:11387–11392.

    Google Scholar 

  112. Solovyeva EV, Hayashi M, Margi K, Barkats C, Klein C, Amsterdam A, Hsueh AI, Tsafriri A. Growth differentiation factor-9 stimulates rat theca-interstitial cell androgen biosynthesis. Biol Reprod 2000;63:1214–1218.

    Google Scholar 

  113. Vitt UA, McGee FA, Hayashi M, Hsueh AJ. In vivo treatment with GDF-9 stimulates primordial and primary follicle progression and theca cell marker CYP17 in ovaries of immature rats. Endocrinology 2000;141:3814–3820.

    Google Scholar 

  114. Vitt UA, Hayashi M, Klein C, Hsueh AJ. Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles. Biol Reprod 2000;62:370–377.

    Google Scholar 

  115. Elvin JA, Clark AT, Wang P, Wolfman NM, Matzuk MM. Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol 1999;13:1035–1048.

    Google Scholar 

  116. Yan C, Wang P, DeMayo J, DeMayo FJ, Elvin JA, Carina C, Prasad SV, Skinner SS, Dunbar BS, Dube JL, Celeste AJ, Matzuk MM. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol 2001;15:854–866.

    Google Scholar 

  117. Galloway SM, McNatty KP, Cambridge LM, Laitinen MPE, Juengel JL, Jokiranta TS, McLaren RJ, Luiro K, Dodds KG, Montgomery GN, Beattie AF, Daris GH, Ritros O. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet 2000;25:279–283.

    Google Scholar 

  118. Terranova PF, Rice VM. Review: Cytokine involvement in ovarian processes. Am J Reprod Immunol 1997;37:50–63.

    Google Scholar 

  119. Spaczynski RZ, Arici A, Duleba AJ. Tumor necrosis factor-? stimulates proliferation of rat ovarian theca-interstitial cells. Biol Reprod 1999;61:993–998.

    Google Scholar 

  120. Andreani CL, Payne DW, Packman JN, Resnick CE, Hurwitz A, Adashi EY. Cytokine-mediated regulation of ovarian function. Tumor necrosis factor ? inhibits gonadotropin-supported ovarian androgen biosynthesis. J Biol Chem 1991;266:6761–6766.

    Google Scholar 

  121. Zachow RJ, Terranova PE. Involvement of protein kinase C and protein tyrosine kinase pathways in tumor necrosis factor-?-induced clustering of ovarian theca-interstitial cells. Mol Cell Endocrinol 1993;97:37–49.

    Google Scholar 

  122. Zachow RJ, Tash JS, Terranova PE. Tumor necrosis factor-? attenuation of luteinizing hormone-stimulated androstenedione production by ovarian theca-interstitial cells: Inhibition of loci within the adenosine 3',5'-monophosphate-dependent signaling pathway. Endocrinology 1993;133:2269–2276.

    Google Scholar 

  123. Adashi EY, Resnick CE, Packman JN, Hurwitz A, Payne DW. Cytokine-mediated regulation of ovarian function: Tumor necrosis factor a inhibits gonadotropin-supported progesterone accumulation by differentiating and luteinized murine granulosa cells. Am J Obstet Gynecol 1990;162:889–896; discussion 896–899.

    Google Scholar 

  124. Hurwitz A, Payne DW, Packman JN, Andreani CL, Resnick CE, Hernandez ER, Adashi EY. Cytokine-mediated regulation of ovarian function: interleukin-1 inhibits gonadouopin-induced androgen biosynthesis. Endocrinology 1991;129:1250-1256.

    Google Scholar 

  125. Doneksy BE, Dias de Moura M, Tedeschi C, Hurwitz A, Adashi EY, Payne DW. Interleukin-1 ß inhibits steroidogenic bioactivity in cultured rat ovarian granulosa cells by stimulation of progesterone degradation and inhibition of estrogen formation. Biol Reprod 1998;58:1108–1116.

    Google Scholar 

  126. Li X, Youngblood GL, Payne AH, Hales DB. Tumor necrosis factor-a inhibition of 17 ?-hydroxylase/C17-20 lyase gene (Cyp17) expression. Endocrinology 1995;136:3519–3526.

    Google Scholar 

  127. Balchak SK, Marcinkiewicz JL. Evidence for the presence of tumor necrosis factor alpha receptors during ovarian development in the rat. Biol Reprod 1999;61:1506–1512.

    Google Scholar 

  128. Terranova PF, Hunter VJ, Roby KF, Hunt JS. Tumor necrosis factor-? in the female reproductive tract. Proc Soc Exp Biol Med 1995;209:325–342.

    Google Scholar 

  129. Roby KF, Son DS, Terranova PF. Alterations of events related to ovarian function in tumor necrosis factor receptor type I knockout mice. Biol Reprod 1999;61:1616–1621.

    Google Scholar 

  130. Sakumoto R, Murakami S, Okuda K. Tumor necrosis factor-? stimulates prostaglandin F2? secretion by bovine luteal cells via activation of mitogen-activated protein kinase and phospholipase A2 pathways. Mol Reprod Dev 2000;56:387–391.

    Google Scholar 

  131. Brunswig-Spickenheier B, Mukhopadhyay AK. Stimulation of nitric oxide-cyclic guanosine monophosphate pathway in bovine ovarian theca cells by tumor necrosis factor alpha (TNF ?). Js this pathway implicated in the THF ?-induced inhibition of luteinizing hormone-stimulated prorenin production? Biol Reprod 1997;57:700–706.

    Google Scholar 

  132. Sassoon D. Wnt genes and endocrine disruption of the female reproductive tract: a genetic approach. Mol Cell Endocrinol 1999;158:1–5.

    Google Scholar 

  133. Dunaif A, Segal KR, Futterweit W, Dobrjansky A. Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes 1989;38:1165–1174.

    Google Scholar 

  134. Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev 1997;18:774–800.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, J.R., Strauss, J.F. Multiple Signal Transduction Pathways Regulate Ovarian Steroidogenesis. Rev Endocr Metab Disord 3, 33–46 (2002). https://doi.org/10.1023/A:1012748718150

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012748718150

Navigation