Skip to main content
Log in

Synthesis and Characterization of Conductive Polyaniline Nanoparticles Through Ultrasonic Assisted Inverse Microemulsion Polymerization

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) nanoparticles were prepared through ultrasonic assisted inverse microemulsion polymerization method. Polymerization of aniline was confined to a nanoreactor named ‘water pool’ surrounded by surfactant molecules in the apolar continuous phase. The size of the PANI nanoparticles decreases with the decrease of the ω value. The spherical nanoparticles (10–50 nm) can further form the uniform submicrometer aggregates with a size of 200 ∼ 400 nm induced by ethanol, and the size of the aggregate decreases with the decrease of the ω value. The morphology of aggregates as well as aggregation behavior of PANI nanoparticles were characterized by TEM. The polymerization rate, UV–vis absorption spectra, FTIR spectra, XRD, as well as the conductivity were examined at different [water]/[surfactant] molar ratio, i.e. ω value. Ultrasound enhances the polymerization rate of aniline that is usually very slow under conventional stirring in inverse microemulsion and contributes to produce spherical nanoparticles. Also, ultrasound irradiation promotes the diffusion of HCl molecules and improves the degree of doping. Polymerization of aniline occurred in the confined nanoreactor in microemulsion and strengthens the hydrogen-bonding of amine and imine of PANI molecular chains, which improves the degree of crystallinity. The conductivity of obtained PANI is in the magnitude of 10-1 S cm-1, and is changed with ω value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angelopoulos M., Y.H. Liao, B. Furman & T. Graham, 1996. Macromolecules 29, 3046.

    Google Scholar 

  • Armes S.P. & M. Aldissi, 1991. Polymer 32, 2043.

    Google Scholar 

  • Biggs S. & F. Grieser, 1995. Macromolecules 28, 4877.

    Google Scholar 

  • Boal A.K., F. Iihan, J.E. Derouchey, T. Thurn-Albrecht, T. P. Russell & V. M. Rotello, 2000. Nature 404, 746.

    PubMed  Google Scholar 

  • Boutonnet M., J. Kizling, P. Stenins & G. Marie, 1982. Colloids and Surfaces 5, 209.

    Google Scholar 

  • Bull R.A., F.R. Fan & A.J. Bard, 1983. J. Electrochem. Soc. 130, 1636.

    Google Scholar 

  • Burroughes J.H., C.A. Jones & R.H. Friend, 1988. Nature 335, 137.

    Google Scholar 

  • Candau F., Y.S. Long, G. Pouyet & S. Candau, 1984. J. Colloid Interface Sci. 101, 167.

    Google Scholar 

  • Cao Y., A. Andreatta, A.J. Heeger & P. Smith, 1989. Polymer 30, 2305.

    Google Scholar 

  • Chen S.-A. & G.-W. Hwang, 1996. Macromolecules 29, 3950.

    Google Scholar 

  • Conway B.E., 1991. J. Electrochem. Soc. 138, 1539.

    Google Scholar 

  • Cui Y., 1994. Spectrascopy Analysis of Organic Compounds. China Fangzhi Press, Beijing, p. 8.

    Google Scholar 

  • Eisazadeh H., G. Spinks & G.G. Wallace, 1995. Polymer Int. 37, 87.

    Google Scholar 

  • Fendler J.H., 1994. Membrane Mimetic Approach to Advanced Materials. Springer-Verlag, Berlin, Heidelberg, Chapter 2.

    Google Scholar 

  • Fletcher P.D.I., A.M. Howe & B.H. Robinson, 1987. J. Chem. Soc. Faraday Trans. 83, 985.

    Google Scholar 

  • Hable C.T. & M.S. Wrighton, 1993. Langmuir 9, 3284.

    Google Scholar 

  • Hatchett D.W., M. Josowicz & J. Janata, 1999. J. Phys. Chem. B 103, 10992.

    Google Scholar 

  • Heller A., 1992. J. Phys. Chem. 96, 3579.

    Google Scholar 

  • Huang C., 1969. Biochemistry 8, 344.

    PubMed  Google Scholar 

  • Gan L.M., C.H. Chew, H.S.O. Chen & L. Ma, 1993. Polymer Bull. 31, 347.

    Google Scholar 

  • Gan L.M., S.C. Ng, S.P. Ong, C.H. Chew & L.L. Koh, 1989. Colloid Polym. Sci. 267, 1087.

    Google Scholar 

  • Gospodinova N., P. Mokreva, T. Tsanov & L. Terlemezyan, 1997. Polymer 38, 743.

    Article  Google Scholar 

  • Gustafsson G., Y. Cao, G.M. Treacy, F. Klavetter, N. Colaneri & A.J. Heeger, 1992. Nature 357, 477.

    Google Scholar 

  • Kaner R.B. & A.G. Macdiarmid, 1988. Sci. Am. 2, 60.

    Google Scholar 

  • Kortan A.R., R. Hull, R.L. Opila, M.G. Bawendi, M.L. Steigerwald, P.J. Carroll & L.E. Brus, 1990. J. Am. Chem. Soc. 112, 1327.

    Google Scholar 

  • Li M., H. Schnablegger & S. Mann, 1999. Nature 402, 393.

    Google Scholar 

  • Li Q., L. Cruz & P. Phillips 1993. Phys. Rev. B 47, 1840.

    Google Scholar 

  • Lu F. L., F. Wudll, M. Nowak & A.J. Heeger, 1986. J. Am. Chem. Soc. 108, 8311.

    Google Scholar 

  • Lu Y., H. Fan, A. Stump, T.L. Ward, T. Rieker & C.J. Brinker, 1999. Nature 398, 223

    Google Scholar 

  • Markham G., Obey T.M. & B. Vincent, 1990. Colloids and Surfaces 51, 239.

    Google Scholar 

  • Mason T.J. & J.P. Lorimer, 1988. Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry. Ellis Horwood, Chichester, UK.

    Google Scholar 

  • Pileni M.P., L. Motte & C. Petit, 1992. Chem. Mater. 4, 338.

    Google Scholar 

  • Pouget J.P., M.E. Jozefowicz, A.J. Epstein, X. Tang & A.G. Macdiarmid, 1991. Macromolecules 24, 779.

    Google Scholar 

  • Ramos L., T.C. Lubensky, N. Dan, P. Nelson & D.A. Weitz, 1999. Science 286, 2325.

    PubMed  Google Scholar 

  • Sailor M.J., E.J. Ginsburg, C.B. Gorman, A. Kumar, R.H. Grubbs & N.S. Lewis, 1990. Science 249, 1146.

    Google Scholar 

  • Sarikaya M., H. Fong, D.W. Frech & R. Humbert, 1999. Materials Science Forum 293, 83.

    Google Scholar 

  • Sellinger A., P.M. Welss, A. Nguyen, Y. Lu, R.A. Asslnk, W. Gong & C.J. Brinker, 1998. Nature 394, 256.

    Google Scholar 

  • Selvan S.T., A. Mani, K. Athinarayanasamy, K.L.N. Phani & S. Pitchumani, 1995. Mater. Res. Bull. 30, 699.

    Google Scholar 

  • Stejskal J., M. Spirkova, A. Riede, M. Helmstedt, P. Mokreva & J. Prokes, 1999. Polymer 40, 2487.

    Google Scholar 

  • Stafstrom S., J.L. Breadas, A.J. Epstein, H.-S. Woo, D.B. Tenner, W.-S. Huang & A.G. Macdiarmid, 1987. Phys, Rev. Lett. 59, 1464.

    Google Scholar 

  • Suslick K.S., T. Hyeon & F. Fang, 1996. Chem. Mater. 8, 2172.

    Google Scholar 

  • Wang Q., H.S. Xia & C.H. Zhang, 2001. J Appl. Polym. Sci. 80, 1478.

    Google Scholar 

  • Xia H.S., Q. Wang & C.H. Zhang, 2001. J Appl. Polym. Sci. 80, 1130.

    Google Scholar 

  • Yoneyama H., 1993. Adv. Mater. 5, 394.

    Google Scholar 

  • Zemb Th., M. Dubois, B. Deme & Th. Gulik-Krzywicki, 1999. Science 283, 816.

    PubMed  Google Scholar 

  • Zheng W., M. Angelopoulos, A.J. Epstein & A.G. Macdiarmid, 1997a. Macromolecules 30, 7634.

    Google Scholar 

  • Zheng W., M. Angelopoulos, A.J. Epstein & A.G. Macdiarmid, 1997b. Macromolecules 30, 2953.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, H., Wang, Q. Synthesis and Characterization of Conductive Polyaniline Nanoparticles Through Ultrasonic Assisted Inverse Microemulsion Polymerization. Journal of Nanoparticle Research 3, 399–409 (2001). https://doi.org/10.1023/A:1012564814745

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012564814745

Navigation