Skip to main content
Log in

Non-contact measurements of thermophysical properties of niobium at high temperature

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Four thermophysical properties of both solid and liquid niobium have been measured using the vacuum version of the electrostatic levitation furnace developed by the National Space Development Agency of Japan. These properties are the density, the thermal expansion coefficient, the constant pressure heat capacity, and the hemispherical total emissivity. For the first time, we report these thermophysical quantities of niobium in its solid as well as in liquid state over a wide temperature range, including the undercooled state. Over the 2340 K to 2900 K temperature span, the density of the liquid can be expressed as ρL (T) = 7.95 × 103 − 0.23 (TT m)(kg · m−3) with T m = 2742 K, yielding a volume expansion coefficient αL(T) = 2.89 × 10−5 (K−1). Similarly, over the 1500 K to 2740 K temperature range, the density of the solid can be expressed as ρs(T) = 8.26 × 103 − 0.14(TT m)(kg · m−3), giving a volume expansion coefficient αs(T) = 1.69 × 10−5 (K−1). The constant pressure heat capacity of the liquid phase could be estimated as C PL(T) = 40.6 + 1.45 × 10−3 (TT m) (J · mol−1 · K−1) if the hemispherical total emissivity of the liquid phase remains constant at 0.25 over the temperature range. Over the 1500 K to 2740 K temperature span, the hemispherical total emissivity of the solid phase could be rendered as εTS(T) = 0.23 + 5.81 × 10−5 (TT m). The enthalpy of fusion has also been calculated as 29.1 kJ · mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Lide and H. P. R. Frederikse (eds.), “CRC Handbook of Chemistry and Physics,” 78th ed. (CRC Press, Boca Raton, FL, 1997).

    Google Scholar 

  2. S. Yoda, N. Koshikawa, T. Nakamura, T. J. Yu, T. Nakamura, Y. Nakamura, S. Yoshitomi, H. Karasawa, T. Ikeda, Y. Arai, M. Kobayashi, Y. Awa, H. Shimoji, T. S. Morita and S. Shimada, J. Jpn. Soc. Microgravity Appl. 17(2) (2000) 76.

    Google Scholar 

  3. P.-F. Paradis, T. Ishikawa and S. Yoda, in Proceedings of Spacebound 2000, Vancouver, BC, May 2000 (Canadian Space Agency) in press.

  4. Idem., in Proceedings of the First International Symposium on Microgravity Research and Applications in Physical Sciences and Biotechnology, Sorrento, Italy, September 2000 (ESA SP-454), edited by the European Space Agency, in press.

  5. W.-K. Rhim, S.-K. Chung, D. Barber, K.-F. Man, G. Gutt, A. A. Rulison and R.E. Spjut, Rev. Sci. Instrum. 64(10) (1993) 2961.

    Google Scholar 

  6. W.-K. Rhim and T. Ishikawa, ibid. 69(10) (1998) 3628.

    Google Scholar 

  7. W.-K. Rhim and P.-F. Paradis, ibid. 70(12) (1999) 4652.

    Google Scholar 

  8. S.-K. Chung, D. B. Thiessen and W.-K. Rhim, ibid. 67(9) (1996) 3175.

    Google Scholar 

  9. P.-F. Paradis and W.-K. Rhim, J. Mater. Res. 14(9) (1999) 3713.

    Google Scholar 

  10. Idem., J. Chem. Thermodyn. 32 (2000) 123.

    Google Scholar 

  11. A. A. Rulison and W.-K. Rhim, Rev. Sci.Instrum. 65(3) (1994) 695.

    Google Scholar 

  12. W. H. Hofmeister, M. B. Robinson and R. J. Bayuzick, Appl. Phys. Lett. 49(20) (1986) 1343.

    Google Scholar 

  13. D. Turnbull, J. Appl. Phys. 21 (1950) 1022.

    Google Scholar 

  14. B. C. Allen, Trans. AIME 227 (1963) 1175.

    Google Scholar 

  15. J. W. Shaner, G. P. Gathers and C. Minichino, High Temp. High Pressures 8 (1976) 425.

    Google Scholar 

  16. Yu. N. Ivaschenko and P.C. Marchenuk, Teplov. Vys. Temp. (USSR) 11(6) (1973) 1285.

    Google Scholar 

  17. D. J. Steinberg, Metall. Trans. 5 (1974) 1341.

    Google Scholar 

  18. D. W. Bonnell, Ph.D. thesis, Rice University, Texas, 1972.

    Google Scholar 

  19. A. Cezairliyan, J. Res. Natl. Bur. Stand. 75A(6) (1971) 565.

    Google Scholar 

  20. G. A. Zhorov, High Temp. (USSR) 5 (1967) 881.

    Google Scholar 

  21. O. Kubaschewski and C.B. Alcock, “Metallurgical Thermochemistry,” 5th ed. (Pergamon Press, Oxford, 1979) p. 268.

    Google Scholar 

  22. G. Betz and M. G. Frohberg, Z. Metallkd. 71 (1980) 451.

    Google Scholar 

  23. A. E. Sheindlin, B.YA. Berezin and V.Ya. Chekhovskoi, High Temp.-High Press. 4 (1972) 611.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paradis, PF., Ishikawa, T. & Yoda, S. Non-contact measurements of thermophysical properties of niobium at high temperature. Journal of Materials Science 36, 5125–5130 (2001). https://doi.org/10.1023/A:1012477308332

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012477308332

Keywords

Navigation