Skip to main content
Log in

In vitro binding of Helicobacter pylori to monohexosylceramides

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

H. pylori is the major cause of human gastritis, duodenal ulcer and thus gastric adenocarcinoma. Many glycosphingolipid species have been postulated as receptors for H. pylori and it is likely that H. pylori attachment requires multiple, perhaps sequential receptor/ligand interactions. In this study, the binding of a number of H. pylori clinical isolates, as well as stock strains, to acid and neutral glycosphingolipids separated on thin-layer chromatograms was characterized under microaerobic conditions. All H. pylori clinical isolates, laboratory strains and type culture collection strains recognized galactosylceramide (Galβ1Cer) with ceramide containing sphingosine and hydroxylated fatty acid (type I), or non-hydroxylated fatty acid (type II), on thin-layer chromatograms and when incorporated into liposomes. The clinical isolates bound stronger to Galβ1Cer (type II) than Galβ1Cer (type I) on TLC, whereas lab and culture collection strains showed the opposite binding preference. A clear preference in binding to Galβ1Cer (type I) incorporated into liposome was shown by most tested strains. Clinical isolates bound well to glucosylceramide (Glcβ1Cer) with hydroxylated fatty acid, whereas weak binding to this glycolipid was detected with the lab and type collection strains. None of the tested strains bound Glcβ1Cer with non-hydroxylated fatty acid on the solid surface, but some strains of both clinical or type collection origins showed weak or very weak binding in the liposome assay. A clear distinction between the binding specificity of living organisms (under microaerobic conditions) as opposed to dying organisms (under normoxic conditions) illustrates the importance of cellular physiology in this process.

These studies illustrate lipid modulation of the potential receptor function of monohexosylceramides and the distinction between the receptor repertoire of H. pylori clinical isolates and cultured strains commonly used to study host-cell adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bode G, Malferthier P, Ditschuneit P, Kim Worchenscher 65, 144–6 (1987).

    Google Scholar 

  2. Price AB, J Gastroenterol Hepatol 6, 209–22 (1991).

    Google Scholar 

  3. Goodwin CS, Lancet ii, 1467–9 (1988).

    Google Scholar 

  4. Talley NJ, Zinseimer AR, Weaver A, Dimango EP, Carpenter HA, Pérez-Pérez GI, Blaser MJ, J Natl Cancer Inst 83, 1734–9 (1991).

    Google Scholar 

  5. Hussell T, Issacson PG, Crabtree JE, Spencer J, Lancet 342, 571–4 (1993).

    Google Scholar 

  6. Wotherspoon AC, Doglioni C, Diss TC, Pan L, Moschini A, de Boni M, Issacson PG, Lancet 342, 575–7 (1993).

    Google Scholar 

  7. Evans DG, Evans DJ, Moulds JJ, Graham DY, Infect Immun 56, 2896–906 (1988).

    Google Scholar 

  8. Slomiany VL, Tiatrosky J, Samanta A, Van Horne K, Nurtey VLN, Slomiany A, Biochem Intl 19, 929–36 (1989).

    Google Scholar 

  9. Evans DG, Evans DJ, Jr. Graham DY, Infect Immun 57, 2272–8 (1989).

    Google Scholar 

  10. Simon PM, Goode PL, Mobasseri A, Zopf D, Infect Immun 65, 750–7 (1997).

    Google Scholar 

  11. Evans DG, Evans DJ, Jr. Graham DY, Gastroenterol 102, 1557–67 (1992).

    Google Scholar 

  12. Evans D, Karjalainen T, Evans D, Graham D, Lee C-H, J Bacteriol 175, 674–83 (1993).

    Google Scholar 

  13. Miller-Podraza H, Abul-Milh M, Teneberg S, Karlsson K-A, Infect Immun 65, 2480–2 (1997).

    Google Scholar 

  14. Gold B, Huesca M, Sherman P, Lingwood C, Infect Immun 61, 2632–8 (1993).

    Google Scholar 

  15. Bitzan MM, Gold BD, Philpot DJ, Huesca M, Sherman PM, Karch H, Lissner R, Lingwood CA, Karmali MA, J Infect Dis 177, 955–61 (1998).

    Google Scholar 

  16. Lingwood CA, Huesca M, Kuksis A, Infect Immun 60, 2470–4 (1992).

    Google Scholar 

  17. Borén T, Falk P, Roth KA, Larson G, Normark S, Science 262, 1892–5 (1993).

    Google Scholar 

  18. Ilver D, Arnqvist A, Ogren J, Frick I-M, Kersulyte D, Incecik ET, Covacci A, Engstrand L, Borén T, Science 279, 373–7 (1998).

    Google Scholar 

  19. Guruge JL, Falk PG, Lorenz RG, Dans M, Wirth H-P, Blaser MJ, Berg DE, Gordon JI, Proc Natl Acad Sci USA 95, 3925–30 (1998).

    Google Scholar 

  20. Clyne M, Drumm B, Gastroent 113, 72–80 (1997).

    Google Scholar 

  21. Osawa H, Sugano K, Iwamori M, Kawakami M, Tada M, Nakao M, Digest Dis Sci 46, 69–74 (2001).

    Google Scholar 

  22. Gerhard M, Lehn N, Neumayer N, Boren T, Rad R, Schepp W, Miehlke S, Classen M, Prinz C, Proc Natl Acad Sci USA 96, 12778–83 (1999).

    Google Scholar 

  23. Kamisago S, Iwamori M, Tai T, Mitamura K, Yazaki Y, Sugano K, Infect Immun 64, 624–8 (1996).

    Google Scholar 

  24. Miller-Podraza H, Milh MA, Bergström J, Karlsson K-A, Glycoconj J 13, 453–60 (1996).

    Google Scholar 

  25. Ångström J, Teneberg S, Milh A-M, Larsson T, Leonardsson I, Olsson B, Halvarsson M, Danielsson D, Naslund I, Ljung Å, Wadström T, Karlsson K-A, Glycobiol 8, 297–309 (1998).

    Google Scholar 

  26. Piotrowski J, Slominany A, Murty VLN, Fekete Z, Slomiany BL, Biochem Intl 24, 749–56 (1991).

    Google Scholar 

  27. Saitoh T, Natomi H, Zhao W, Okuzumi K, Sugano K, Iwamori M, Nagai Y, FEBS Lett 282, 385–7 (1991).

    Google Scholar 

  28. Huesca M, Borgia S, Hoffman P, Lingwood CA, Infect Immun 64, 2643–8 (1996).

    Google Scholar 

  29. Mamelak D, Mylvaganam M, Whetstone H, Hartmann E, Lennarz W, Wyrick P, Raulston J, Han H, Hoffman P, Lingwood C, Biochemistry 40, 3572–82 (2001).

    Google Scholar 

  30. Karlsson KA, Glycobiol 10, 761–71 (2000).

    Google Scholar 

  31. Lingwood CA, Current Biology 2, 695–700 (1998).

    Google Scholar 

  32. Levine M, Komblatt MJ, Murray RK, Can J Biochem 53, 679–89 (1975).

    Google Scholar 

  33. Strasberg P, Grey A, Warren I, Skomorowski M-A, J Lip Res 30, 121–7 (1989).

    Google Scholar 

  34. Yamakawa T, Irie R, Iwanaga M, J Biochem 48, 490–7 (1960).

    Google Scholar 

  35. Lingwood CA, Wasfy G, Han H, Huesca M, Infect Immun 61, 2474–8 (1993).

    Google Scholar 

  36. Waldi D. In Dünnschicht-Chromatographie, E. Stahl (ed), Berlin, Springer-Verlag, 1962, pp. 496–515.

    Google Scholar 

  37. Szoka F, Jr., Phabadjopouos D, Proc Natl Acad Sci 75, 4194–8 (1978).

    Google Scholar 

  38. Lingwood CA, Law H, Pellizzari A, Sherman P, Drumm B, Lancet ii, 238–41 (1989).

    Google Scholar 

  39. McGowan CC, Cover TL, Blaser M, Gastroenterol 110, 926–38 (1996).

    Google Scholar 

  40. Cheli R, Crespi M, Testino G, Citarda F, J Clin Gastroenterol 26, 3–6 (1998).

    Google Scholar 

  41. Krivan HC, Roberts DD, Ginsburg V, Proc Natl Acad Sci USA 85, 6157–61 (1988).

    Google Scholar 

  42. Lingwood CA, Biochim Biophys Acta 1455, 375–86 (1999).

    Google Scholar 

  43. Lingwood CA, Cheng M, Krivan HC, Woods D, Biochem Biophy Res Comm 173, 1076–81 (1991).

    Google Scholar 

  44. Foster DB, Philpott D, Abul-Milh M, Huesca M, Sherman PM, Lingwood CA, Microb Path 27, 289–301 (1999).

    Google Scholar 

  45. Foster DB, Abul-Milh M, Huesca M, Lingwood CA, Infect Immun 68, 3108–15 (2000).

    Google Scholar 

  46. Moran A, Sturegard E, Sjunnesson H, Wadstrom T, Hynes S, FEMS Immunol Med Micro 29, 263–70 (2000).

    Google Scholar 

  47. Pascher I, Sundell S, Chem Phys Lipids 20, 175–91 (1977).

    Google Scholar 

  48. Nyholm P-G, Pascher I, Biochem 32, 1225–34 (1993).

    Google Scholar 

  49. Strömberg N, Ryd N, Lindberg AA, Karlsson K-A, FEBS Lett 232, 193–8 (1988).

    Google Scholar 

  50. Blomberg L, Krivan H, Cohen P, Conway P, Infect Immun 61, 2526–31 (1993).

    Google Scholar 

  51. Payne D, O'Reilly M, Williamson D, Infect Immun 61, 3673–7 (1993).

    Google Scholar 

  52. Abul-Milh M, Paradis S-É, Dubreuil JD, Jacques M, Infect Immun 67, 4983–7 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abul-Milh, M., Foster, D.B. & Lingwood, C.A. In vitro binding of Helicobacter pylori to monohexosylceramides. Glycoconj J 18, 253–260 (2001). https://doi.org/10.1023/A:1012460824913

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012460824913

Navigation