Skip to main content
Log in

Modeling Studies of the Formation and Destruction of NO in Pulsed Barrier Discharges in Nitrogen and Air

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper presents the results of modeling studies on the formation and destruction of NO in pulsed barrier discharges in nitrogen and air. The goals of this work are to identify the major processes involved in the formation and destruction of NO in air discharges, to distinguish between oxidative and reductive paths for NO destruction, to explore the potential importance of excited state reactions, to evaluate the role of water in such systems, and to identify the “final” products in the absence of heterogeneous processes. In all cases, the systems were modeled with 100×10−4% (100 ppm) of added NO, with and without 3% added water. The focus in all of this work is chemistry in the post-pulse regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. J. Lowke and R. Morrow, IEEE Trans. Plasma Sci. 23, 661 (1995).

    Google Scholar 

  2. W. Braun, D. Kahaner, and J. T. Herron, Int. J. Chem. Kinetics 20, 51 (1988).

    Google Scholar 

  3. P. C. Cosby, J. Chem. Phys. 98, 9544 (1993).

    Google Scholar 

  4. B. M. Penetrante, M. C. Hsiao, B. T. Merritt, G. E. Vogtlin, and P. H. Wallman, IEEE Trans. Plas. Sci. 23, 679 (1995).

    Google Scholar 

  5. J. T. Herron and D. S. Green, Plasma Chem. Plasma Process., in press (2001).

  6. R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, M. J. Rossi, and J. Troe, J. Phys. Chem. Ref. Data, 26, 1329 (1997).

    Google Scholar 

  7. W. B. DeMore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. J. Molina, JPL Publication 97-4, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (1997).

    Google Scholar 

  8. J. T. Herron, J. Phys. Chem. Ref. Data 28, 1453 (1999).

    Google Scholar 

  9. W. G. Mallard, F. Westley, J. T. Herron, R. F. Hampson, and D. H. Frizzell. NIST Chemical Kinetics Database, NIST Standard Reference Database 17, (1998).

  10. H. Umemoto, T. Asai, H. Hashimoto, and T. Nakae, J. Phys. Chem., A103, 700 (1999).

    Google Scholar 

  11. P. A. Sa and L. Loureiro, J. Phys. D: Appl. Phys. 30, 2320 (1997).

    Google Scholar 

  12. V. Guerra and L. Loureiro, Plasma Sources Sci. Technol. 6, 361, 373 (1997).

    Google Scholar 

  13. I. A. Kossyi, A. Yu. Kostinsky, A. A. Matveyev, and V. P. Silakov, Plasma Sources Sci. Technol. 1, 207 (1992).

    Google Scholar 

  14. I. P. Vinogradov and K. Wiesemann, Plasma Sources Sci. Technol. 6, 307 (1997).

    Google Scholar 

  15. S. De Benedictis and G. Dilecce, J. Phys. III France 6, 1189 (1996).

    Google Scholar 

  16. J. T. Herron, in “Non-Thermal Plasma Techniques for Pollution Control”, NATO ASI Series, Vol. G34, Part A, (B. M. Penetrante and S. E. Schultheis, eds.), Springer-Verlag, Berlin (1993), p. 107.

    Google Scholar 

  17. “Non-Thermal Plasma Techniques for Pollution Control”, NATO ASI Series, (B. M. Penetrante and S. E. Schultheis, eds.), Springer-Verlag, Berlin (1993).

  18. B. M. Penetrante, M. C. Hsiao, B. T. Merritt, G. E. Vogtlin, P. H. Wallman, M. Neiger, O. Wolf, T. Hammer, and S. Broer, App. Phys. Lett. 68, 3719 (1996).

    Google Scholar 

  19. B. M. Penetrante, J. N. Bardsley, and M. C. Hsiao, Jpn. J. Appl. Phys. 36, 5007 (1997).

    Google Scholar 

  20. W. T. Rawlins, M. E. Fraser, and S. M. Miller, J. Phys. Chem. 93, 1097 (1989).

    Google Scholar 

  21. T. G. Slanger and G. Black, J. Chem. Phys. 68, 998 (1978).

    Google Scholar 

  22. T. G. Slanger and G. Black, J. Chem. Phys. 68, 989 (1978).

    Google Scholar 

  23. D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, J. Phys. Chem. Ref. Data 21, 411 (1992).

    Google Scholar 

  24. W. Hack, H. Gg. Wagner, and A. Zaspypkin, Ber. Bunsenges. Phys. Chem. 98, 156 (1994).

    Google Scholar 

  25. H. Umemoto, K. Sugiyama, S. Tsunashima, and S. Sato, Bull. Chem. Soc. Jpn. 58, 3076 (1985).

    Google Scholar 

  26. J. D. Adamson, S. K. Farhat, C. L. Morter, G. P. Glass, R. F. Curl, and L. F. Phillips, J. Phys. Chem. 98, 5665 (1994).

    Google Scholar 

  27. D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, J. Phys. Chem. Ref. Data 23, 847 (1994).

    Google Scholar 

  28. T. Gougousi, M. F. Golde, and R. Johnsen, Chem. Phys. Lett. 265, 399 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herron, J.T. Modeling Studies of the Formation and Destruction of NO in Pulsed Barrier Discharges in Nitrogen and Air. Plasma Chemistry and Plasma Processing 21, 581–609 (2001). https://doi.org/10.1023/A:1012003218939

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012003218939

Navigation