Skip to main content
Log in

Weak Forms of Shakedown for Elastic–Plastic Structures Exhibiting Ductile Damage

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A special weak-form shakedown is studied for elastic–plastic internal-variable material models with nonlinear hardening, damageable elastic moduli and damageable yield surface, in the hypothesis of ductile damage, (i.e. damage induced by plastic strains), but the precise evolutive law of damage being left unspecified. Sufficient weak-form shakedown theorems are presented, one static and another kinematic, each assessing whether eventually plastic deformations cease together with their consequences, including ductile damage. A two-sided delimitation is provided, within which the weak-form shakedown safety factor can be located. An upper bound to the post-transient damage for a particular isotropic damage model is also proposed. A simple numerical application is presented.

Sommario. Si studia una forma speciale debole di adattamento strutturale per materiali elasto-plastici con variabili interne e con incrudimento non lineare, nonché moduli elastici e superficie di plasticità soggetti a danno duttile (cioè indotto dalle deformazioni plastiche) con una non precisata legge evolutiva. Si presentano due teoremi sufficienti per l'adattamento in forma debole, ciascuno essendo capace di predire se la deformazione plastica infine cessa unitamente alle sue conseguenze, compreso il danno duttile. Si definisce una delimitazione bilaterale entro la quale ricade il fattore di sicurezza associato a questa forma debole di adattamento. Si propone altresì una delimitazione superiore per il danno accumulato nella fase transitoria nel caso di un tipo particolare di danno isotropo. Si presenta una semplice applicazione numerica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polizzotto, C., Borino, G. and Fuschi, P., 'An extended shakedown theory for elastic-plastic-damage material models', Eur. J. Mech. A/Solids 15 (1996) 825-858.

    Google Scholar 

  2. Lemaitre, J. and Chaboche, J.-L., Mechanics of Solid Materials, Cambridge University Press, New York, 1990.

    Google Scholar 

  3. Hachemi, A. and Weichert, D., 'An extension of the static shakedown theorem to a certain class of inelastic materials with damage', Arch. Mech. 44 (1992) 491-498.

    Google Scholar 

  4. Ju, J.W., 'On energy-based coupled elastoplastic damage theories: constitutive modelling and computational aspects', Int. J. Solids Struct. 25 (1989) 803-833.

    Google Scholar 

  5. Hachemi, A. and Weichert, D., 'Application of shakedown theory to damaging inelastic material under mechanical and thermal loads', Int. J. Mech. Sci. 39 (1997) 1067-1076.

    Google Scholar 

  6. Hachemi, A. and Weichert, D., 'Numerical shakedown analysis of damaged structures', Comput. Meth. Appl. Mech. Engng. 160 (1998) 57-60.

    Google Scholar 

  7. Druyanov, B. and Roman, I., 'Shakedown theorem extended to elastic nonperfectly plastic bodies', Mech. Res. Comm. 22 (1995) 571-576.

    Google Scholar 

  8. Druyanov, B. and Roman, I., 'On adaptation (shakedown) of a class of damaged elastic bodies to cyclic loading', Eur. J. Mech. A/Solids 17 (1998) 71-78.

    Google Scholar 

  9. Feng, X.-Q. and Yu, S.-W., 'An upper bound on damage of elastic-plastic structures at shakedown', Int. J. Damage Mech. 3 (1994) 277-289.

    Google Scholar 

  10. Feng, X.-Q. and Yu, S.-W., 'Damage and shakedown analysis of structures with strain-hardening', Int. J. Plasticity 11 (1995) 237-249.

    Google Scholar 

  11. Siemaszko, A., 'Inadaptation analysis with hardening and damage', Eur. J. Mech. A/Solids 12 (1993) 237-248.

    Google Scholar 

  12. Perzyna, P., 'Constitutive modelling of dissipative solids for post-critical behaviour and failure', J. Engng. Mater. Technol. ASME 106 (1984) 410-419.

    Google Scholar 

  13. Halphen, B. and Nguyen, Q. S., 'Sur les les matériaux standard généralisés', J. de Mécanique 14 (1975) 39-63.

    Google Scholar 

  14. Comi, C., 'A non-local model with tension and compression damage mechanisms', Eur. J. Mech. A/Solids 20 (2001) 1-22.

    Google Scholar 

  15. Resende, L, 'A damage mechanics constitutive theory for the inelastic behaviour of concrete', Comp. Meth. Appl. Mech. Engng. 60 (1987) 57-93.

    Google Scholar 

  16. Germain, P., Nguyen, Q.S. and Suquet. P., 'Continuum thermodynamics', J. Appl. Mech. 50 (1983) 1010-1021.

    Google Scholar 

  17. Hill, R., The Mathematical Theory of Plasticity, Clarendon Press, Oxford, U.K., 1950.

    Google Scholar 

  18. Drucker, D.C., 'Plasticity', in: Goodier, J.N. and Hoff, J.H. (eds.), Structural Mechanics, Pergamon Press, London, 1960, pp. 407-455.

    Google Scholar 

  19. Maier, G., 'A generalization to nonlinear hardening of the first shakedown theorem for discrete elastic-plastic models', Atti Accademia dei Lincei, Rendiconti Fisica 8(LXXXI) (1987) 161-174.

    Google Scholar 

  20. Maier, G. and Novati, G., 'Dynamic shakedown and bounding theory for a class of nonlinear hardening discrete structural models', Int. J. Plasticity 7 (1990) 679-692.

    Google Scholar 

  21. Halphen, B., 'Accomodation et adaptation des structures élasto-visco-plastiques et plastiques', in: Ecole Polytechnique Palaiseau (ed.), Matériax et Structures sous Chargement Cyclique, Association Amicale des Ingénieurs Anciens Elèves, Ecole Nationales Ponts et Chausées, Paris, 1979, pp. 203-229.

    Google Scholar 

  22. Polizzotto, C., Borino, G., Caddemi, S. and Fuschi, P., 'Shakedown problems for material models with internal variables', Eur. J. Mech. A/Solids 10 (1991) 621-639.

    Google Scholar 

  23. Koiter,W.J., 'General theorems for elastic-plastic-solids', in: Hill, R. and Sneddon, I. (eds) Progress in Solid Mechanics, Vol. I, North-Holand, (1960), pp. 167-221.

  24. König, J.A., Shakedown of Elastic-Plastic Structures, PWN-Polish Scientific Publishers, Warsaw and Elsevier, Amsterdam, 1987.

    Google Scholar 

  25. Martin, J.B., Plasticity: Fundamentals and General Results, The MIT-Press, Cambridge, MA., 1975.

    Google Scholar 

  26. Gokhfeld, D.A. and Cherniavsky, D.F., Limit Analysis of Structures at Thermal Cycling, Sijthoff and Noordhoff, Alphen an der Rijn, The Netherlands, 1980.

    Google Scholar 

  27. Ponter, A.R.S., 'An upper bound on the small displacements of elastic perfectly plastic structures', J. Appl. Mech., 39 (1972) 959-963.

    Google Scholar 

  28. Maier, G., 'Upper bounds on deformations of elastic-workhardening structures in the presence of dynamic and second-order effects', J. Struct. Mech. 2 (1973) 265-280.

    Google Scholar 

  29. Maier, G., Comi, C., Corigliano, A. and Hübel, H., Bounds and Estimates on Inelastic Deformations: a Study of their Practical Usefulness, European Commission, EUR 16555 EN, Brussels, 1995.

    Google Scholar 

  30. Polizzotto, C., 'A unified treatment of shakedown theory and related bounding techniques', Solid Mech. Arch. 7 (1982) 19-75.

    Google Scholar 

  31. Panzeca, T., Polizzotto, C. and Rizzo, S., 'Bounding techniques and their application to simplified plastic analysis of structures', in: Lloyd Smith, D. (ed.), Mathematical Programming Methods in Structural Plasticity, Springer-Verlag, Wien, 1990, pp. 315-348.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polizzotto, C., Borino, G. & Fuschi, P. Weak Forms of Shakedown for Elastic–Plastic Structures Exhibiting Ductile Damage. Meccanica 36, 49–66 (2001). https://doi.org/10.1023/A:1011969520565

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011969520565

Navigation