Skip to main content
Log in

Charge Compensation Mechanisms in La-Doped BaTiO3

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The mechanism of doping BaTiO3 with La has been investigated by a combination of X-ray diffraction, electron probe microanalysis, scanning and transmission electron microscopy and impedance measurements. Phase diagram results confirm that the principal doping mechanism involves ionic compensation through the creation of titanium vacancies. All samples heated in oxygen at 1350–1400°C are electrical insulators, consistent with an ionic compensation mechanism. Samples heated in air or atmospheres of low oxygen partial pressure, at similar temperatures, lose a small amount of oxygen and this gives rise to a second, electronic compensation mechanism in addition to the main, ionic compensation mechanism; as a result, samples are dark-coloured and semiconducting. The change from insulating to semiconducting behaviour is reversible, by changing the atmosphere on heating at 1350–1400°C. We find no evidence for any changes in cationic composition of the BaTiO3 solid solutions arising from changes in oxygen content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Nowotny and M. Rekas, Solid State Ionics, 49, 135 (1991).

    Google Scholar 

  2. N.-H. Chan and D. M. Smyth, J. Electrochem. Soc., 123(10), 1584 (1976).

    Google Scholar 

  3. N.-H. Chan and D. M. Smyth, J. Am. Ceram. Soc., 67(4), 285 (1984).

    Google Scholar 

  4. J. Daniels, K.H. Hardtl, D. Hennings, and R. Wernicke, Philips Res. Repts., 31, 487 (1976).

    Google Scholar 

  5. G.H. Jonker and E.E. Havinga, Mat. Res. Bull., 17, 345 (1982).

    Google Scholar 

  6. D. Makovec, Z. Samardzija, U. Delalut, and D. Kolar, J. Am. Ceram. Soc., 78(8), 2193 (1995).

    Google Scholar 

  7. F.D. Morrison, D.C. Sinclair, J.M.S. Skakle, and A.R. West, J. Am. Ceram. Soc., 81(7), 1957 (1998).

    Google Scholar 

  8. S. Škapin, D. Kolar, D. Suvorov, and Z. Samardzija, J. Mater. Res., 13(5), 1327 (1998).

    Google Scholar 

  9. G.V. Lewis and C.R.A. Catlow, J. Phys. Chem. Solids, 47(1), 89 (1986).

    Google Scholar 

  10. O. Saburi, J. Phys. Soc. Jpn., 14(9), 1159 (1959).

    Google Scholar 

  11. V.J. Tennery and R.L. Cook, J. Am. Ceram. Soc., 44(4), 187 (1961).

    Google Scholar 

  12. S.B. Desu, Ceramic Transactions, 8, 157 (1990).

    Google Scholar 

  13. C.-J. Peng and H.-Y. Lu, J. Am. Ceram. Soc., 71(44), C-44 (1988).

    Google Scholar 

  14. T.-B. Wu and J.-N. Lin, J. Am. Ceram. Soc., 77(3), 759 (1994).

    Google Scholar 

  15. A.B. Alles, V.R.W. Amarakoon, and V.L. Burdick, J. Am. Ceram. Soc., 72(1), 148 (1989).

    Google Scholar 

  16. F.D. Morrison, D.C. Sinclair, and A.R.West, J. Am. Ceram. Soc., 84(3), 531 (2001).

    Google Scholar 

  17. P.G. Bruce and A.R.West, J. Electrochem. Soc., 130, 662 (1983).

    Google Scholar 

  18. D.E. Johnston, Ph.D. Thesis, University of Aberdeen (1993).

  19. Scribner Associates, Inc. Charlottesville, Virginia.

  20. N. Hirose and A.R.West, J. Am. Ceram. Soc., 79(6), 1633 (1996).

    Google Scholar 

  21. J.T.S. Irvine, D.C. Sinclair, and A.R. West, Adv. Mater., 2(3), 132 (1990).

    Google Scholar 

  22. D.C. Sinclair and A.R.West, J. Appl. Phys., 66(8), 3850 (1989).

    Google Scholar 

  23. Joint Committee for Powder Diffraction Standards, card no. 35-815.

  24. F.D. Morrison, D.C. Sinclair, and A.R. West, J. Appl. Phys., 86(11), 6355 (1999).

    Google Scholar 

  25. G.H. Jonker, Solid State Electron., 7, 895 (1964).

    Google Scholar 

  26. G. Goodman, J. Am. Ceram. Soc., 46(1), 48 (1963).

    Google Scholar 

  27. W. Hewang, J. Am. Ceram. Soc., 47(10), 484 (1964).

    Google Scholar 

  28. W. Hewang, J. Mat. Sci., 6, 1214 (1971).

    Google Scholar 

  29. H.M. Chan, M.P. Harmer, and D.M. Smyth, J. Am. Ceram. Soc., 69(6), 507 (1986).

    Google Scholar 

  30. R.J. Borg and G.J. Dienes, An Introduction to Solid State Diffusion (Academic Press, London, 1988).

    Google Scholar 

  31. S. Shirasaki, H. Yamamura, H. Haneda, K. Kakegawa, and J. Moori, J. Chem. Phys., 73(9), 4640 (1980).

    Google Scholar 

  32. H. Sasaki and Y. Matsuo, J. Am. Ceram. Soc., 48(8), 434 (1965).

    Google Scholar 

  33. J. Maier, J. Jamnik, and M. Leonhardt, Solid State Ionics, 129, 25 (2000).

    Google Scholar 

  34. I. Denk, F. Noll, and J. Maier, J. Am. Ceram. Soc., 80(2), 279 (1997).

    Google Scholar 

  35. I. Denk, W. Münch, and J. Maier, J. Am. Ceram. Soc., 78(12), 3265 (1995).

    Google Scholar 

  36. J.B. MacChesney and J.F. Potter, J. Am. Ceram. Soc., 48(2), 81 (1965).

    Google Scholar 

  37. M. Kuwabara and H. Matsuda, J. Am. Ceram. Soc., 80(10), 2590 (1997).

    Google Scholar 

  38. S. Shirasaki, H. Haneda, K. Arai, and M. Fujimoto, J. Mat. Sci., 22, 4439 (1987).

    Google Scholar 

  39. J.B. MacChesney, P.K. Gallagher, and F.V. DiMarcello, J. Am. Ceram. Soc., 46(5), 197 (1963).

    Google Scholar 

  40. D. Makovec and M. Drofenik, J. Am. Ceram. Soc., 83(10), 2593 (2000).

    Google Scholar 

  41. J. Nowotny and M. Rekas, Ceramics International, 20, 265 (1994).

    Google Scholar 

  42. C.R. Song and H.-I. Yoo, Solid State Ionics, 120, 141 (1999). (b) C.R. Song and H.-I. Yoo, Phys. Rev. B., 61(6), 3975 (2000). (c) C.R. Song and H.-I. Yoo, Solid State Ionics, 124, 289 (1999). (d) C.R. Song and H.-I. Yoo, J. Am. Ceram. Soc., 83(4), 773 (2000).

    Google Scholar 

  43. D.M. Smyth, Solid State Ionics, 129, 5 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrison, F.D., Coats, A.M., Sinclair, D.C. et al. Charge Compensation Mechanisms in La-Doped BaTiO3. Journal of Electroceramics 6, 219–232 (2001). https://doi.org/10.1023/A:1011400630449

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011400630449

Navigation