Skip to main content
Log in

Carbon Storage in Terrestrial Ecosystems of China: Estimates at Different Spatial Resolutions and Their Responses to Climate Change

Climatic Change Aims and scope Submit manuscript

Abstract

The carbon storage of terrestrial ecosystems in China was estimated using acommon carbon density method for vegetation and soils relating to thevegetation types. Usingmedian density estimates, carbon storage of 35.23 Gt (1 Gt = 1015g) in biomass and119.76 Gt in soils with total of 154.99 Gt were calculated based on thebaseline distribution of37 vegetation types. Total carbon storage of the median estimates at differentspatial resolutionswas 153.43, 158.08 and 158.54 Gt, respectively, for the fine (10′),median (20′) and coarse (30′)latitude × longitude grids. There were differences of −1.56, +3.09and +3.55 Gt carbon storagebetween baseline vegetation and those at different spatial resolutions. Changein mappingresolution would change area estimates and hence carbon storage estimates. Thefiner the spatialresolution in mapping vegetation, the closer the carbon storage to thebaseline estimation. Carbonstorage in vegetation and soils for baseline vegetation is quite similar tothat of biomes predictedby BIOME3 for the present climate and CO2 concentration of 340ppmv. Climate changealone as well as climate change with elevated CO2 concentrationwill produce an increasein carbon stored by vegetation and soils, especially a larger increase in thesoils. Total mediancarbon storage of terrestrial ecosystems in China will increase by 5.09 Gt and15.91 Gt for theclimate scenario at CO2 concentration of 340 ppmv and 500 ppmv,respectively. This ismainly due to changes in vegetation areas and the effects of changes inclimate and CO2concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Reference

  • Adams, J. M., Faure, H., Faure-Denard, L., McGlad, J. M., and Woodward, F. I.: 1990, ‘Increases in Terrestrial Carbon Storage from the Last Glacial Maximum to the Present’, Nature 348, 711–714.

    Google Scholar 

  • Betts, R. A., Cox, P. M., Lee, S. E., and Woodward, F. I.: 1997, ‘Contrasting Physiological and Structure Vegetation Feedbacks in Climate Change Simulations’, Nature 387, 796–799.

    Google Scholar 

  • Chinese Central Meteorological Office: 1984, Climatological Data of China, China Meteorology Press, Beijing.

    Google Scholar 

  • Cramer, W. and Solomon, A. M.: 1993, ‘Climatic Classification and Future Redistribution of Global Agricultural Land’, Clim. Res. 3, 97–110.

    Google Scholar 

  • Cramer, W., Shugart, H. H., Noble, I. R., Woodward, F. I., Bugmann, H., Bondeau, A., Foley, J. A., Gardner, R. H., Lauenroth, W. K., Pitelka, L. F., Sala, O., and Sutherst, R.W.: 1999, ‘Ecosystem Composition and Structure’, in Walker, B. H., Steffen, W. L., Canadell, J., and Ingram, J. S. I. (eds.), The Terrestrial Biosphere and Global Change: Implications for Natural and Managed Ecosystems, Cambridge University Press, Cambridge, pp. 190–228.

    Google Scholar 

  • Editorial Committee for Vegetation of China: 1980, Vegetation of China, Science Press, Beijing.

    Google Scholar 

  • Fang, J. Y., Liu, G. H., and Xu, S. L.: 1996a, ‘Carbon Cycle of Terrestrial Ecosystems in China and Its Global Significance’, in Wang, R. S., Fang, J. Y., Gao, L., and Feng, Z. W. (eds.), Hot Spots in Modern Ecology, China Science and Technology Press, Beijing, pp. 240–250.

    Google Scholar 

  • Fang, J. Y., Liu, G. H., and Xu, S. L.: 1996b, ‘Carbon Pools in Terrestrial Ecosystems in China’, in Wang, R. S., Fang, J. Y., Gao, L., and Feng, Z. W. (eds.), Hot Spots in Modern Ecology, China Science and Technology Press, Beijing, pp. 251–277.

    Google Scholar 

  • FAO-UNESCO: 1974, Soil Map of the World, 1:5 000 000, Vols. I–X, UNESCO, Paris.

    Google Scholar 

  • Foley, J. A., Levis, S., Prentice, I. C., Pollard, D., and Thompson, S. L.: 1998, ‘Coupling Dynamics Models of Climate and Vegetation’, Global Change Biol. 4, 561–579.

    Google Scholar 

  • Foley, J. A., Prentice, I. C., Ramankutty, N., Levis, S., Pollard, D., Sitch, S., and Haxeltine, A.: 1996, ‘An Integrated Biosphere Model of Land Surface Processes, Terrestrial Carbon Balance, and Vegetation Dynamics’, Global Biogeochem. Cycles 10, 603–628.

    Google Scholar 

  • Friedlingstein, C., Prentice, K. C., Fung, I. Y., Jone, J. G., and Brasseur, G. P.: 1995, ‘Carbon-Biosphere-Climate Interaction in the Last Glacial Maximum Climate’, J. Geophys. Res. 100, 7203–7221.

    Google Scholar 

  • Haxeltine, A. and Prentice, I. C.: 1996, ‘BIOME3: An Equilibrium Terrestrial Biosphere Model Based on Ecophysiological Constraints, Resource Availability and Competition among Plant Functional Types’, Global Biogeochem. Cycles 10, 693–709.

    Google Scholar 

  • Hou, X. Y., Sun, S. Z., Zhang, J. W., He, M. G., Wang, Y. F., Kong, D. Z., and Wang, S. Q.: 1982, Vegetation Map of the People's Republic of China, China Map Publisher, Beijing.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC): 1996, Climate Change 1995: The Science of Climate Change, Cambridge University Press, Cambridge.

    Google Scholar 

  • Johns, T. C., Carnell, R. E., Crossley, J. F., Gregory, J. M., Mitchell, J. F. B., Senior, C. A., Tett, S. F. B., and Wood, R. A.: 1997, ‘The Second Hadley Centre Coupled Ocean-Atmosphere GCM: Model Description, Spinup and Validation’, Clim. Dyn. 13, 103–134.

    Google Scholar 

  • Matthews, E.: 1984, ‘Global Inventory of the Pre-Agricultural and Present Biomass’, Prog. Biometeorol. 3, 237–247.

    Google Scholar 

  • McGuire, A. D., Melillo, J. M., Joyce, L. A., Kicklighter, D. W., Grace, A. L., Moor III, B., and Vorosmarty, C. J.: 1992, ‘Interactions between Carbon and Nitrogen Dynamics in Estimating Net Primary Productivity for Potential Vegetation in North America’, Global Biogeochem. Cycles 6, 101–124.

    Google Scholar 

  • McGuire, A. D., Melillo, J. M., Kicklighter, D. W., Pan, Y., Xiao, X., Helfrich, J., Moore III, B., Vorosmarty, C. J., and Schloss, A. L.: 1997, ‘Equilibrium Responses of Global Net Primary Production and Carbon Storage to Doubled Atmospheric Carbon Dioxide: Sensitivity to Changes in Vegetation Nitrogen Concentration’, Global Biogeochem. Cycles 11, 173–189.

    Google Scholar 

  • Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore III, B., Vorosmarty, C. J., and Schloss, A. L.: 1993, ‘Global Climate Change and Terrestrial Net Primary Production’, Nature 363, 234–240.

    Google Scholar 

  • Melillo, J. M., Prentice, I. C., Schulze, E.-D., Farquhar, G. D., and Sala, O. E.: 1996, ‘Terrestrial Ecosystems: Biotic Feedbacks to Climate’, in Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds.), Climate Change: The IPCC 1995 Assessment, Cambridge University Press, Cambridge, pp. 449–481.

    Google Scholar 

  • Mitchell, J. F. B., Johns, T. C., Gregory, J. M., and Tett, S. F. B.: 1995, ‘Climate Response to Increasing Levels of Greenhouse Gases and Sulphate Aerosols’, Nature 376, 501–504.

    Google Scholar 

  • Ni, J., Sykes, M. T., Prentice, I. C., and Cramer, W.: 2000, ‘Modelling the Vegetation of China Using the Process-Based Equilibrium Terrestrial Biosphere Model BIOME3’, Global Ecol. Biogeog. 9, in press.

  • Olson, J. S., Watts, J. A., and Allison, L. J.: 1983, Carbon in Live Vegetation of Major World Ecosystems, ORNL-5862, Oak Ridge National Laboratory, Oak Ridge.

    Google Scholar 

  • Olson, J. S., Watts, J. A., and Allison, L. J.: 1985, Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: A Database, Oak Ridge National Laboratory, Oak Ridge.

    Google Scholar 

  • Peng, C. H. and Apps, M. J.: 1997, ‘Contribution of China to the Global Carbon Cycle since the Last Glacial Maximum: Reconstruction from Palaeovegetation Maps and an Empirical Biosphere Model’, Tellus 49B, 393–408.

    Google Scholar 

  • Peng, C. H., Guiot, J., Van Canpo, E., and Cheddadi, R.: 1994, ‘The Vegetation Carbon Storage Variation in Europe since 6000 BP: Reconstruction from Pollen’, J. Biogeogr. 21, 19–31.

    Google Scholar 

  • Peng, C. H., Guiot, J., and Van Canpo, E.: 1995a, ‘Reconstruction of the Past Terrestrial Carbon Storage of the Northern Hemisphere from the Osnabrück Biosphere Model and Palaeodata’, Clim. Res. 5, 107–118.

    Google Scholar 

  • Peng, C. H., Guiot, J., Van Canpo, E., and Cheddadi, R.: 1995b, ‘The Variation of Terrestrial Carbon Storage at 6000 Years BP in Europe: Reconstruction from Pollen Data Using Two Empirical Biosphere Models’, J. Biogeogr. 22, 581–591.

    Google Scholar 

  • Peng, C. H., Guiot, J., Van Canpo, E., and Cheddadi, R.: 1995c, ‘Temporal and Spatial Variations of Terrestrial Biomes and Carbon Storage Since 13 000 Years in Europe: Reconstruction from Pollen Data and Statistical Models’, Water Air Soil Pollut. 82, 375–391.

    Google Scholar 

  • Peng, C. H., Guiot, J., and Van Campo, E.: 1998, ‘Estimating Changes in Terrestrial Vegetation and Carbon Storage: Using Palaeoecological Data and Models’, Quatern. Sci. Rev. 17, 719–735.

    Google Scholar 

  • Post, W. M., Emanuel, W. R., Zinke, P. J., and Stangenberger, A. G.: 1982, ‘Soil Carbon Pools and World Life Zones’, Nature 298, 156–159.

    Google Scholar 

  • Prentice, I. C.: 1993, ‘Biome Modelling and the Carbon Cycle’, in Heimann, M. (ed.), The Global Carbon Cycle, Springer, Berlin, pp. 219–238.

    Google Scholar 

  • Prentice, K. C. and Fung, I. Y.: 1990, ‘The Sensitivity of Terrestrial Carbon Storage to Climate Change’, Nature 346, 48–50.

    Google Scholar 

  • Prentice, I. C. and Sykes, M. T.: 1995, ‘Vegetation Geography and Global Carbon Storage Changes’, in Woodwell, G. M. and Mackenzie, F. T. (eds.), Biotic Feedbacks in the Global Climatic System: Will the Warming Speed the Warming?, Oxford University Press, New York, pp. 304–312.

    Google Scholar 

  • Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A., and Solomon, A. M.: 1992, ‘Global Biome Model: Predicting Global Vegetation Patterns from Plant Physiology and Dominance, Soil Properties and Climate’, J. Biogeogr. 19, 117–134.

    Google Scholar 

  • Prentice, I. C., Sykes, M. T., Lautenschlager, M., Harrison, S. P., Dennissenko, O., and Bartlein, P. J.: 1993, ‘Modelling Global Vegetation Patterns and Terrestrial Carbon Storage at the Last Glacial Maximum’, Global Ecol. Biogeog. Lett. 3, 67–76.

    Google Scholar 

  • Schlesinger, W. H.: 1991, Biogeochemistry: An Analysis of Global Change, Academic Press, New York.

    Google Scholar 

  • Sitch, S., Prentice, I. C., Smith, B., and LPJ Consortium Members: 2000. ‘LPJ: A Coupled Model of Vegetation Dynamics and the Terrestrial Carbon Cycle’, in Sitch, S., The Role of Vegetation Dynamics in the Control of Atmospheric CO 2 Content, Doctoral Dissertation, Lund University, Lund, pp. 1–53.

    Google Scholar 

  • Smith, T. M., Cramer, W. P., Dixon, R. K., Leemans, R., Neilson, R. P., and Solomon, A. M.: 1993, ‘The Global Terrestrial Carbon Cycle’, Water Air Soil Pollut. 70, 19–37.

    Google Scholar 

  • Smith, T. M., Leemans, R., and Shugart, H. H.: 1992, ‘Sensitivity of Terrestrial Carbon Storage to CO2 Induced Climate Change: Comparison of Four Scenarios Based on General Circulation Models’, Clim. Change 21, 367–384.

    Google Scholar 

  • VEMAPMembers: 1995, ‘Vegetation/Ecosystem Mapping and Analysis Project (VEMAP): A Comparison of Biogeography and Biogeochemistry Models in the Context of Global Change’, Global Biogeochem. Cycles 9, 407–437.

    Google Scholar 

  • Woodward, F. I., Smith, T. M., and Emanuel, W. R.: 1995, ‘A Global Land Primary Productivity and Phytogeography Model’, Global Biogeochem. Cycle 9, 471–490.

    Google Scholar 

  • Xiong, Y. and Li, Q. K.: 1987, Soil of China, 2nd edn., Science Press, Beijing.

    Google Scholar 

  • Zhang, J. C.: 1991, Climate of China, China Meteorology Press, Beijing.

    Google Scholar 

  • Zinke, P. J., Stangenberger, A. G., Post, W. M., Emanuel, W. R., and Olson, J. S.: 1984, Worldwide Organic Soil Carbon and Nitrogen Data, ORNL/TM-8857, Oak Ridge National Laboratory, Oak Ridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, J. Carbon Storage in Terrestrial Ecosystems of China: Estimates at Different Spatial Resolutions and Their Responses to Climate Change. Climatic Change 49, 339–358 (2001). https://doi.org/10.1023/A:1010728609701

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010728609701

Keywords

Navigation