Skip to main content
Log in

The role of intra- and intermolecular hydrogen bonds in the formation of β-cyclodextrin head-to-head and head-to-tail dimers. The results of ab initio and semiempirical quantum-chemical calculations

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The conformation of a free β-cyclodextrin molecule optimized by the MNDO/PM3 quantum-chemical calculations has C7 symmetry. The “right” orientation of the interglucose hydrogen bonds in β-cyclodextrin, in which the 2-OH groups act as the proton donors and the O atoms of the nearby 3"-OH groups function as the proton acceptors, is advantageous for thermodynamic reasons. The ring of seven H bonds thus formed stabilizes the symmetrical form of β-cyclodextrin. The β-cyclodextrin head-to-head dimer has D 7 symmetry and consists of molecules whose 2-OH groups partcipate as proton donors in the formation of fourteen complementary intermolecular hydrogen bonds. The energy of H bonds in the β-cyclodextrin monomer and dimer was estimated to be 1.0--1.4 kcal mol–1. Of the two possible β-cyclodextrin dimers, the “head-to-tail” dimer is more thermodynamically stable. The thermodynamic preference of the right orientation of the inter-glucose H bonds in β-cyclodextrin was confirmed by the MP2/6-31G(d,p)//6-31G(d,p) ab initio calculations for maltose (α-glucodioside). The maltose molecule with inter-glucose H bonds of the type 2-OH→O(3")-H is more stable than the structure with the H-(2)O←H-O(3") orientation of H bonds with a difference of ∼2.7 kcal mol–1. According to the MNDO/PM3 method, the maltose structure with the right H bond orientation is more stable by ∼3.1 kcal mol–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. T. D'Souza and K. B. Lipkowitz, Cyclodextrins (Special Issue), Chem. Rev., 1998, 98, 1714.

    Google Scholar 

  2. K. Harata, Cyclodextrins (Special Issue), Chem. Rev., 1998, 98, 1803.

    Google Scholar 

  3. Cambridge Structural Database, University of Cambridge, UK, 2000.

  4. C. Betzel, W. Saenger, B. E. Hingerty, and G. M. Brown, J. Am. Chem. Soc., 1984, 106, 7545.

    Google Scholar 

  5. V. Zabel, W. Saenger, and S. A. Mason, J. Am. Chem. Soc., 1986, 108, 3664.

    Google Scholar 

  6. T. Steiner, S. A. Mason, and W. Saenger, J. Am. Chem. Soc., 1991, 113, 5676.

    Google Scholar 

  7. B. E. Hingerty, C. Betzel, and W. Saenger, Am. Cryst. Assoc., Abstr. Papers (Winter), 1984, 12, 37.

    Google Scholar 

  8. I. N. Topchieva, E. I. Popova, F. A. Kalashnikov, I. G. Panova, V. G. Avakyan, and V. I. Gerasimov, Dokl. Akad. Nauk, 1997, 357, 648 [Dokl. Chem., 1997 (Engl. Transl.)].

    Google Scholar 

  9. K. B. Lipkowitz, Chem. Rev., 1998, 98, 1829.

    Google Scholar 

  10. K. B. Lipkowitz, J. Org. Chem., 1991, 56, 6357.

    Google Scholar 

  11. C. Margeritis and C. Sinistri, Z. Naturforsch., 1996, 51a, 950.

    Google Scholar 

  12. N. S. Bodor, M. J. Huang, and J. D. Watts, J. Pharm. Sci., 1995, 84, 330.

    Google Scholar 

  13. M. J. Huang, J. D. Watts, and N. Bodor, Int. J. Quant. Chem., 1997, 64, 711.

    Google Scholar 

  14. V. B. Luzhkov and C. A. Venanzi, J. Phys. Chem., 1995, 99, 2312.

    Google Scholar 

  15. X.-S. Li, L. Liu, Q.-Z. Guo, S. D. Chu, and Y.-C. Liu, Chem. Phys. Lett., 1999, 307, 117.

    Google Scholar 

  16. V. G. Avakyan, V. B. Nazarov, M. V. Alfimov, and A. A. Bagatur'yants, Izv. Akad. Nauk, Ser. Khim., 1999, 1857 [Russ. Chem. Bull., 1999, 48, 1833 (Engl. Transl.)].

    Google Scholar 

  17. J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209.

    Google Scholar 

  18. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, N. Matsunaga, K. A. Nguen, S. Su, T. L. Windus, M. Dupius, and J. A. Montgomery, J. Comput. Chem., 1993, 14, 347.

    Google Scholar 

  19. J. W. Brown and B. D. Wladkowski, J. Am. Chem. Soc., 1996, 118, 1190.

    Google Scholar 

  20. M. E. Gress and G. A. Jeffrey, Acta Crystallogr., Sect. B, 1977, 33, 2490.

    Google Scholar 

  21. F. Takusagawa and R. A. Jacobson, Acta Crystallogr., Sect. B, 1978, 34, 213.

    Google Scholar 

  22. PC Model V. 7. Molecular Modeling Software, Serena Software, Box 3076, Bloomington, IN 47402-3076, USA.

  23. S. Immel and F. W. Lichtenthaler, Liebigs Ann., 1995, 929.

  24. F. W. Lichtenthaler and S. Immel, Liebigs Ann., 1996, 27.

  25. R. L. VanEtten, J. F. Sebastian, G. A. Glowes, and M. L. Bender, J. Am. Chem. Soc., 1967, 89, 3253.

    Google Scholar 

  26. B. Casu, M. Reggiani, G. G. Gallo, and A. Vigevani, Tetrahedron, 1968, 23, 281.

    Google Scholar 

  27. L. A. Curtiss, D. J. Frurip, and M. Blander, J. Chem. Phys., 1979, 71, 2703.

    Google Scholar 

  28. J. A. Odutola and T. R. Dyke, J. Chem. Phys., 1980, 72, 5062.

    Google Scholar 

  29. K. A. Jebber, K. Zhang, C. J. Cassady, and A. Chung-Phillips, J. Am. Chem. Soc., 1996, 118, 10515.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avakyan, V.G., Nazarov, V.B., Alfimov, M.V. et al. The role of intra- and intermolecular hydrogen bonds in the formation of β-cyclodextrin head-to-head and head-to-tail dimers. The results of ab initio and semiempirical quantum-chemical calculations. Russian Chemical Bulletin 50, 206–216 (2001). https://doi.org/10.1023/A:1009557729668

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009557729668

Navigation