Skip to main content
Log in

Generation of defects in model lubricant monolayers and their contribution to energy dissipation in friction

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The structural, mechanical (friction) and spectroscopic properties of model lubricant films made of self-assembled and Langmuir–Blodgett monolayers on quartz, mica and gold have been investigated with atomic force microscopy, the surface forces apparatus and sum-frequency generation. In these films, the molecules tend to form densely packed structures, with the alkane chains mostly vertical and parallel to each other. The SFG results suggest that under moderate pressures of a few tens of MPa, the methyl end group of the alkane chains is rotated to accommodate a terminal gauche distortion. The molecule, however, retains its upright close-packed structure with a lattice periodicity when ordered, which can be resolved by AFM. At pressures above 0.1 GPa, changes in the form of collective molecular tilts take place that lower the height of the monolayer. Only certain angles of tilt are allowed that are explained by the interlocking of methylene units in neighboring chains. The discrete angular tilts are accompanied by increases in friction. A model based on the van der Waals attractive energy between chains is used to explain the stability of the films and to estimate the cohesive energy changes during tilt and, from that, the increases in friction force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Salmeron, Chemtech 28 (1998) 17.

    Google Scholar 

  2. R.W. Carpick and M. Salmeron, Chem. Rev. 97 (1997) 1163.

    Google Scholar 

  3. A. Ulman, Introduction to Ultrathin Organic Films (Academic Press, Boston, 1991).

    Google Scholar 

  4. B.N.J. Persson, Sliding Friction: Physical Principles and Applications (Springer, Heidelberg, 1998).

    Google Scholar 

  5. Q. Du, E. Freysz and Y.R. Shen, Science 264 (1994) 826.

    Google Scholar 

  6. Q. Du, X.-d. Xiao, D. Charych, F. Wolf, P. Frantz, Y.R. Shen and M. Salmeron, Phys. Rev. B 51 (1995) 7456.

    Google Scholar 

  7. K. Kojio, S. Ge, A. Takahara and T. Kajiyama, Langmuir 14 (1998) 971.

    Google Scholar 

  8. A.B. Tutein, S.J. Stuart and J.A. Harrison, Langmuir 16 (2000) 291.

    Google Scholar 

  9. X.-D. Xiao, J. Hu, D.H. Charych and M. Salmeron, Langmuir 12 (1996) 235.

    Google Scholar 

  10. A. Lio, D.H. Charych and M. Salmeron, J. Phys. Chem. B 101 (1997) 3800.

    Google Scholar 

  11. G.-y. Liu and M. Salmeron, Langmuir 10 (1994) 367.

    Google Scholar 

  12. G.-y. Liu, P. Fenter, C.E.D. Chidsey, D.F. Ogletree, P. Eisenberger and M. Salmeron, J. Chem. Phys. 101 (1994) 4301.

    Google Scholar 

  13. M. Salmeron, G. Neubauer, A. Folch, M. Tomitori, D.F. Ogletree and P. Sautet, Langmuir 9 (1993) 3600.

    Google Scholar 

  14. M. Salmeron, G.-y. Liu and D.F. Ogletree, in: Forces in Scanning Probe Methods, eds. H.-J. Güntherodt, D. Anselmetti and E. Meyer (Kluwer Academic, Dordrecht, 1995) pp. 593–598.

    Google Scholar 

  15. S.A. Joyce, R.C. Thomas, J.E. Houston, T.A. Michalske and R.M. Crooks, Phys. Rev. Lett. 68 (1992) 2790.

    Google Scholar 

  16. E. Barrena, C. Ocal and M. Salmeron, J. Chem. Phys. 111 (1999) 9797.

    Google Scholar 

  17. C. Carraro, O.W. Yauw, M.M. Sung and R. Maboudian, J. Phys. Chem. B 102 (1998) 4441.

    Google Scholar 

  18. M.M. Sung, C. Carraro, O.W. Yauw, Y. Kim and R. Maboudian, J. Phys. Chem. B 104 (2000) 1556.

    Google Scholar 

  19. A.B. Tutein, S.J. Stuart and J.A. Harrison, J. Phys. Chem. B 103 (1999) 11357.

    Google Scholar 

  20. H.I. Kim, T. Koini, T.R. Lee and S. Perry, Langmuir 13 (1997) 7192.

    Google Scholar 

  21. H.I. Kim, M. Graupe, O. Oloba, T. Koini, S. Imaduddin, T.R. Lee and S. Perry, Langmuir 15 (1999) 3179.

    Google Scholar 

  22. A. Lio, C. Morant, D.F. Ogletree and M. Salmeron, J. Phys. Chem. B 101 (1997) 4767.

    Google Scholar 

  23. E. Barrena, S. Kopta, D.F. Ogletree, D.H. Charych and M. Salmeron, Phys. Rev. Lett. 82 (1999) 2880.

    Google Scholar 

  24. E. Barrena, C. Ocal and M. Salmeron, J. Chem. Phys. 113 (2000) 2413.

    Google Scholar 

  25. R. Ackermann, O. Inacker and H. Ringsdorf, Kolloid Z. Z. Polym. 249 (1971) 1118.

    Google Scholar 

  26. M.D. Mowery, S. Kopta, D.F. Ogletree, M. Salmeron and C.E. Evans, Langmuir 15 (1999) 5118.

    Google Scholar 

  27. R.W. Carpick, D.Y. Sasaki and A.R. Burns, Tribol. Lett. 7 (1999) 79.

    Google Scholar 

  28. M. Hartig, L.F. Chi, X.D. Liu and H. Fuchs, Thin Solid Films 327-329 (1998) 262.

    Google Scholar 

  29. A. Würger, Phys. Rev. Lett. 83 (1999) 1696.

    Google Scholar 

  30. S. Kopta, E. Barrena, D.F. Ogletree, D.H. Charych and M. Salmeron, Phys. Rev. Lett. 83 (1999) 1697.

    Google Scholar 

  31. J.N. Israelachvili, Intermolecular and Surface Forces, 2nd Ed. (Academic Press, London, 1992).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salmeron, M. Generation of defects in model lubricant monolayers and their contribution to energy dissipation in friction. Tribology Letters 10, 69–79 (2001). https://doi.org/10.1023/A:1009026312732

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009026312732

Navigation