Skip to main content
Log in

The Endocrinology of Invertebrates

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Neuroendocrine controls exist already in lower invertebrates, and during evolution, endocrine glands have appeared in molluscs, although endocrine cells may have appeared earlier. The present review discusses at first the different strategies used in the past and nowadays to isolate hormones and to analyze their functions. Both peptidic and lipidic hormones have been found in invertebrates, just as in vertebrates. Some of these hormones are specific of invertebrates, whereas other ones may be very close to their vertebrate counterparts. However, hormonal functions are less conserved than structures, a fact that is also apparent within vertebrate hormones, depending on which tissues possess receptors and are therefore their targets. Some examples of hormone families (peptides, steroids, terpenes) are described. Xenobiotics disturb normal cell functions, and they may accordingly alter endocrine systems, either at the endocrine cells or at the target cell levels. This will be illustrated by a few characteristic examples. However, the rather fragmentary knowledge of invertebrate (except insect) endocrinology prevents in many cases an adequate understanding of the mechanisms involved in xenobiotic toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Audsley, N., McIntosh, C. and Phillips, J.E. (1992). Isolation of a neuropeptide from locust corpus cardiacum which influences ileal transport). Journal of Experimental Biology 173, 261-74.

    Google Scholar 

  • Bellés, X. (1998). Endocrine effectors in insect vitellogenesis. In G.M. Coast and S.G. Webster eds Recent Adänces in Arthropod Endocrinology, pp. 71-90. Cambridge: Cambridge University Press.

    Google Scholar 

  • Blumberg, B., Sabbagh, W., Jr, Juguilon, H., Bolado, J., Jr, van Meter, C.M., Ong, E.S. and Evans, R.M. (1998). SXR, a novel steroid and xenobiotic sensing nuclear receptor). Genes and Development 12, 3195-205.

    Google Scholar 

  • Bodenmüller, H. and Roberge, M. (1985). The head activator, discovery, characterization, immunoassays and biological properties in mammals. Biochimica et Biophysica Acta 825, 261-7.

    Google Scholar 

  • Bolander, F.F. ed (1994). Molecular Endocrinology, 2nd ed. London: Academic Press.

    Google Scholar 

  • Borovsky, D., Carlson, D.A., Hancock, R.G., Rembold, H. and Van Handel, E. (1994). De novo biosynthesis of juvenile hormone III and I by the accessory glands of the male mosquito). Insect Biochemistry and Molecular Biology 24, 437-44.

    Google Scholar 

  • Bückmann, D. (1984). The phyologeny of hormones and hormonal systems). Nova Acta Leopoldina NF56, 437-52.

    Google Scholar 

  • Butenandt, A. and Karlson, P. (1954). Ñber die Isolierung eines Metamorphose-Hormons der Insekten in kristallisierter Form. Zeitschrift für Naturforschung 9b, 389-91.

    Google Scholar 

  • Cassier, P., Lafont, R., Descamps, M., Porchet, M. and Soyez, D. eds (1997). La Reproduction des Invértebrés. Paris: Masson.

    Google Scholar 

  • Coast, G.M. and Webster, S.G. eds (1998). Recent Advances in Arthropod Endocrinology, pp. 71-90. Cambridge: Cambridge University Press.

    Google Scholar 

  • Costet, M.F., El Achouri, M., Charlet, M., Lanot, R., Benveniste, P. and Hoffmann, J.A. (1987). Ecdysteroid biosynthesis and embryonic development are disturbed in insects Locusta migratoria reared on plant diet Triticum sativum with a selectively modified sterol profile). Proceedings of the National Academy of Sciences USA 84, 643-7.

    Google Scholar 

  • Darrouzet, E., Mauchamp, B., Prestwich, G.D., Kerhoas, L., Ujváry, I. and Couillaud, F. (1997). Hydroxy juvenile hormones, new putative juvenile hormones biosynthesized by locust corpora allata in vitro. Biochemical and Biophysical Research Communications 240, 752-8.

    Google Scholar 

  • Darvas, B., Rees, H.H., Kuwano, E., Bélai, I., Matolcsy, G., Timár, T., Hoggard, N. and Tag El-Din, M.H. (1990). Some inhibitors of microsomal ecdysone 20-monooxygenase. Invertebrate Reproduction and Development 18, 110.

    Google Scholar 

  • deFur, P.L., Crane, M., Ingersoll, C. and Tattersfield, L. eds (1999). Endocrine Disruption in Invertebrates: Endocrinology, Testing, and Assessment, 302 pp. Pensacola, FL: SETAC.

    Google Scholar 

  • Delbecque, J.P., Weidner, K. and Hoffmann, K.H. (1990). Alternative sites for ecdysteroid production in insects. Invertebrate Reproduction and Development 18, 29-42.

    Google Scholar 

  • De Loof, A. (1987). The impact of the discovery of vertebrate-type steroids and peptide hormone-like substances in insects. Entomologia Experimentalis et Applicata 45, 105-13.

    Google Scholar 

  • De Loof, A. and Schoofs, L. (1990). Homologies between the amino acid sequences of some vertebrate peptide hormones and peptides isolated from invertebrate sources. Comparative Biochemistry and Physiology 95B, 459-68.

    Google Scholar 

  • Downer, R.G.H. and Laufer, H. eds (1988). Endocrinology of Insects. New York: Alan R. Liss Inc.

    Google Scholar 

  • Durchon, M. and Joly, P. eds (1978). Endocrinologie des Invértébres. Paris: PUF.

    Google Scholar 

  • Ebberink, R.H.M., Smit, A.B. and Van Minnen, J. (1989). The insulin family, evolution of structure and function in vertebrates and invertebrates. Biological Bulletin 177, 176-82.

    Google Scholar 

  • Féral, C., Le Gall, S., Martin, M.C. and Lengronne, C. (1987). The neuroendocrine mechanism responsible for sexual inversion of the gonad in the protandrous hermaphroditic mollusc, Crepidula fornicata L. General and Comparative Endocrinology 65, 432-8.

    Google Scholar 

  • Fernlund, P. and Josefsson, L. (1972). Crustacean color-change hormone, amino acid sequence and chemical synthesis. Science 177, 173-4.

    Google Scholar 

  • Fingerman, M., Nababhushanam, K. and Sarojini, R. (1993). Vertebrate-type hormones in Crustaceans, localization, identification and functional significance. Zoological Science 10, 13-29.

    Google Scholar 

  • Fuchs, S.Yu., Spiegelmann, V.S. and Belitsky, G.A. (1993). The effect of the cytochrome P-450 system inducers on the development of Drosophila melanogaster. Journal of Biochemical Toxicology 8, 83-8.

    Google Scholar 

  • Gäde, G., Hoffmann, K.H. and Spring, J.H. (1997). Hormonal regulation in insects, facts, gaps, and future directions. Physiological Reviews 77, 963-1032.

    Google Scholar 

  • Geraerts, W.P.M., Smit, B.A., Li, K.W. and Hordijk, P.L. (1992). The light green cells of Lymnaea, a neuroendocrine model system for stimulus-induced expression of multiple genes in a single cell type. Experientia 48, 464-73.

    Google Scholar 

  • Gomot, L. and Deray, A. 1987. Les escargots. La Recherche, No. 186, 302-11.

  • Goodman, W.G. (1990). Biosynthesis, titer regulation, and transport of juvenile hormones. In A.P. Gupta ed Morphogenetic Hormones of Arthropods, Discoveries, Syntheses, Metabolism, Evolution, Modes of Action and Techniques, pp. 83-124. New Brunswick, NJ: Rutgers University Press.

    Google Scholar 

  • Greenberg, M.J. and Price, D.A. (1983). Invertebrate neuropeptides, native and naturalized. Annual Review of Physiology 45, 271-88.

    Google Scholar 

  • Grieneisen, M.L. (1994). Recent advances in our knowledge of ecdysteroid biosynthesis in insects and crustaceans. Insect Biochemistry and Molecular Biology 24, 115-32.

    Google Scholar 

  • Henrich, V.C. and Brown, N.E. (1995). Insect nuclear receptors, a developmental and comparative perspective. Insect Biochemistry and Molecular Biology 25, 881-97.

    Google Scholar 

  • Highnam, K.C. and Hill, L. eds (1978). The Comparative Endocrinology of Invertebrates. Londres: Arnold.

    Google Scholar 

  • Homola, E. and Chang, E.S. (1997). Methyl farnesoate, Crustacean juvenile hormone in search of functions. Comparative Biochemistry and Physiology 117B, 347-56.

    Google Scholar 

  • Horiguchi, T., Hyeon-Seo, C., Shiraishi, H., Shibata, Y., Soma, M., Morita, M. and Shimizu, M. (1998). Field studies on imposex and organotin accumulation in the rock shell, Thais clavigera, from the Seto Inland Sea and the Sanriku region, Japan. Sci. Total Environment 18, 65-70.

    Google Scholar 

  • Hourdry, J., Cassier, P., D'Hondt, J.L. and Porchet, M. eds (1995). Métamorphoses animales. Transitions écologiques. Paris: Hermann.

    Google Scholar 

  • Hua, Y.J., Bylemans, D., De Loof, A. and Koolman, J. 1994. Inhibition of ecdysone biosynthesis in flies by a hexapeptide isolated from vitellogenic ovaries. Molecular and Cellular Endocrinology 104, R1-4.

    Google Scholar 

  • Jones, G. (1995). Molecular mechanism of action of juvenile hormone. Annu. Rev. Entomol. 40, 147-69.

    Google Scholar 

  • Jones, G. and Sharp, P.A. (1997). Ultraspiracle, an invertebrate receptor for juvenile hormones. Proceedings of the National Academy of Sciences USA 94, 13499-503.

    Google Scholar 

  • Karlson, P. (1984). Introduction, the concept of hormonal systems in retrospect and prospect. Nova Acta Leopoldina 56, 9-20.

    Google Scholar 

  • Käuser, G. (1989). On the evolution of ecdysteroid hormones. In J. Koolman ed Ecdysone, from Chemistry to Mode of Action, pp. 327-336. Stuttgart: Georg Thieme Verlag.

    Google Scholar 

  • Keller, R. (1992). Crustacean neuropeptides, structures, functions and comparative aspects. Experientia 48, 439-48.

    Google Scholar 

  • Kliewer, S.A., Lehmann, J.M. and Willson, T.M. (1999). Orphan nuclear receptors: turning endocrinology into reverse. Science 284, 757-60.

    Google Scholar 

  • Lachaise, F., Le Roux, A., Hubert, M. and Lafont (1993). The molting gland of Crustaceans: localization, activity and endocrine control. Journal of Crustacean Biology 13, 198-234.

    Google Scholar 

  • Lafont, R. (1991). Reverse endocrinology, or ''hormones'' seeking functions. Insect Biochemistry 21, 697-721.

    Google Scholar 

  • Lafont, R. (1997). Ecdysteroids and related molecules in animals and plants. Archives of Insect Biochemistry and Physiology 35, 3-20.

    Google Scholar 

  • Lafont, R. and Connat, J.L. (1989). Pathways of ecdysone metabolism. In J. Koolman ed Ecdysone, from Chemistry to Mode of Action, pp. 167-173. Stuttgart: Georg Thieme Verlag.

    Google Scholar 

  • Lafont, R., Connat, J.L., Delbecque, J.P., Porcheron, P., Dauphin-Villemant, C. and Garcia, M. (1995). Comparative studies on ecdysteroids. In E. Ohnishi, H. Sonobe and S.Y. Takahashi eds Recent Advances in Insect Biochemistry and Molecular Biology, pp. 45-91. Nagoya: University of Nagoya Press.

    Google Scholar 

  • Laufer, H., Borst, D.W., Baker, F.C., Carrasco, C., Sinkus, M., Reuter, C.C., Tsai, L.W. and Schooley, D.A. (1987). Identification of a juvenile hormone-like compound in a crustacean. Science 235, 202-5.

    Google Scholar 

  • Laufer, H. and Downer, R.G.H. eds (1989). Endocrinology of Selected Invertebrate Types. New York: Alan R. Liss Inc.

    Google Scholar 

  • Lezzi, M., Bergman, T., Mouillet, J.-F. and Henrich, V.C. (1999). The ecdysone receptor puzzle. Archives of Insect Biochemistry and Physiology 41, 99-106.

    Google Scholar 

  • Loughton, B.G. and Saleuddin, A.S.M. eds (1990). Neurobiology and Endocrinology of Selected Invertebrates. North York, Canada: Captus University Publications.

    Google Scholar 

  • Lubet, P. and Mathieu, M. (1990). Les régulations endocriniennes chez les mollusques bivalves. Année Biologique XXIX, 235-52.

    Google Scholar 

  • Miller, J.R. and Mumma, R.O. (1973). Defensive agents of the American water beetles Agabus seriatus and Graphoderus liberus. Journal of Insect Physiology 19, 917-25.

    Google Scholar 

  • Nässel, D.R. (1996). Peptidergic neurohormonal control systems in invertebrates. Current Opinions in Neurobiology 6, 842-50.

    Google Scholar 

  • Nijhout, F. ed (1994). Insect hormones. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Noguti, T., Adachi-Yamada, T., Katagiri, T., Kawakami, A., Iwami, M., Ishibashi, J., Kataoka, H., Suzuki, A., Go, M. and Ishizaki, H. (1995). Insect prothoracic hormone, a new member of the vertebrate growth factor superfamily. F.E.B.S. Letters 376, 251-6.

    Google Scholar 

  • Proux, J. (1993). The Oxytocin-Arginine-Vasopressin family of peptides in invertebrates. In K.W. Beyenbach ed Structure and Function of Primary Messengers in Invertebrates, Insect Diuretic and Antidiuretic Peptides. Molecular Comparative Physiology 12, 1-21.

  • Raabe, M. ed (1989). Recent Developments in Insect Neurohormones. New York: Plenum Press.

    Google Scholar 

  • Reddy, P.S. and Fingerman, M. (1995). Effect of cadmium chloride on physiological color changes of the fiddler crab, Uca pugilator. Ecotoxicology and Environmental Safety 31, 69-75.

    Google Scholar 

  • Reddy, P.S., Katyayani, R.V. and Fingerman, M. (1996). Cadmium and naphtalene-induced hyperglycaemia in the fiddler crab, Uca pugilator, differential modes of action on the neuroendocrine system. Bulletin of Environmental Contamination and Toxicology 56, 425-31.

    Google Scholar 

  • Riddiford, L.M. (1996). Molecular aspects of juvenile hormone action in insect metamorphosis. In L.I. Gilbert, J. Tata and B. Atkinson eds Metamorphosis, Post-Embryonic Reprogramming of Gene Expression in Amphibian and Insect Cells, pp. 223-251. San Diego: Academic Press, Inc.

    Google Scholar 

  • Satake, H., Takuwa, K., Minakata, H. and Matsushima, O. (1999). Evidence for conservation of the vasopressinr oxytocin superfamily in annelids. Journal of Biological Chemistry 274, 5605-11.

    Google Scholar 

  • Schoofs, L., Vanden Broeck, J. and De Loof, A. (1993). The myotropic peptides of Locusta migratoria, structures, distribution, functions and receptors. Insect Biochemistry and Molecular Biology 23, 859-81.

    Google Scholar 

  • Smith, B.S. (1981). Male characteristics on female mud snails caused by antifouling bottom paints. Journal of Applied Toxicology 1, 22-5.

    Google Scholar 

  • Spindler, K.-D. (1988). Parasites and hormones. In H. Mehlhorn ed Parasitology in Focus. Facts and Trends, pp. 465-476. Berlin: Springer-Verlag.

    Google Scholar 

  • Spindler, K.-D. (1997). Interactions between steroid hormones and the nervous system. Neurotoxicology 18, 745-54.

    Google Scholar 

  • Swevers, L., Lambert, J.G.D. and De Loof, A. (1991). Synthesis and metabolism of vertebrate-type steroids by tissues of insects, a critical evaluation. Experientia 47, 687-98.

    Google Scholar 

  • Tomaschko, K.H. (1999). Nongenomic effect of ecdysteroids. Archives of Insect Biochemistry and Physiology 41, 89-98.

    Google Scholar 

  • Van Herp, F. and Soyez, D. (1997). Arthropoda-Crustacea. In K.G. and R.G. Adiyodi eds Reproductive Biology of Invertebrates, Vol. VIII, pp. 247-275. New Delhi: Oxford and IBH Publishing Co.

    Google Scholar 

  • Yao, T.P., Forman, B.M., Jiang, Z., Cherbas, L., Chen, J.D., McKeown, M., Cherbas, P. and Evans, R.M. (1993). Functional ecdysone receptor is the product of EcR and ultraspiracle gene. Nature 366, 476-9.

    Google Scholar 

  • Yates, R.A., Tuan, R.S., Shepley, K.J. and Unnasch, T.R. (1995). Characterization of genes encoding members of the nuclear hormone receptor superfamily from Onchocerca volvulus. Molecular and Biochemical Parasitology 70, 19-31.

    Google Scholar 

  • Zou, E. and Fingerman, M. (1997). Effect of estrogenic xenobiotics on molting of the water flea, Daphnia magna. Ecotoxicology and Environmental Safety 38, 281-5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaFont, R. The Endocrinology of Invertebrates. Ecotoxicology 9, 41–57 (2000). https://doi.org/10.1023/A:1008912127592

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008912127592

Navigation