Skip to main content
Log in

Low-Dimensional Dynamics in Sensory Biology 2: Facial Cold Receptors of the Rat

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We report the results of a search for evidence of unstable periodic orbits in the sensory afferents of the facial cold receptors of the rat. Cold receptors are unique in that they exhibit a diversity of action potential firing patterns as well as pronounced transients in firing rate following rapid temperature changes. These characteristics are the result of an internal oscillator operating at the level of the membrane potential. If such oscillators have three or more degree of freedom, and at least one of which also exhibits a nonlinearity, they are potentially capable of complex activity. By detecting the existence of unstable periodic orbits, we demonstrate low-dimensional dynamical behavior whose characteristics depend on the temperature range, impulse pattern, and temperature transients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badii R, Brun E, Finardi M, Flepp L, Holzer R, Parisi J, Reyl C, Simonet J (1994) Progress in the analysis of experimental chaos through periodic orbits. Rev. Mod. Phys. 66: 1389–1415.

    Google Scholar 

  • Bevington PR (1969) Data Reduction and Error Analysis. McGraw-Hill, New York, pp. 48–49.

    Google Scholar 

  • Braun HA, Schäfer K, Voigt K, Peters R, Bretschneider F, Pei X, Wilkens L, Moss F (1997) Low-dimensional dynamics in sensory biology 1: Thermally sensitive electroreceptors of the catfish. J. Comp. Neurosci. 4: 335–347.

    Google Scholar 

  • Braun HA, Wissing H, Schäfer K, Hirsch MC (1994) Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature 367: 270–273.

    Google Scholar 

  • Christini D, Collins J (1995) Controlling nonchaotic neuronal noise using chaos control techniques. Phys. Rev. Lett. 75: 2782–2785.

    Google Scholar 

  • Cvitanovic P (1991) Periodic orbits as the skeleton of classical and quantum chaos. Physica D 51: 138–152.

    Google Scholar 

  • Dolan K (1997) The statistical occurrence of unstable periodic orbits in noisy chaotic and random systems. Bull. Am. Phys. Soc. 42: 815.

    Google Scholar 

  • Faure P, Korn H (1997) A nonrandom dynamic component in the synaptic noise of a central neuron. Proc. Natl. Acad. Sci. USA 94: 6506–6511.

    Google Scholar 

  • Gluckman BJ, Spano ML, Yang W, Ding M, In V, Ditto WL (1997) Tracking unstable periodic orbits in nonstationary highdimensional chaotic systems: Method and experiment. Phys. Rev. E. 55: 4935–4942.

    Google Scholar 

  • Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica D 9: 189–208.

    Google Scholar 

  • Hall H, Christini D, Tremblay M, Collins J, Glass L, Billette J (1997) Dynamic control of cardiac alternans. Phys. Rev. Lett. 78: 4518–4521.

    Google Scholar 

  • Heinz M, Schäfer K, Braun HA (1990) Analysis of facial cold receptor activity in the rat. Brain Res. 521: 289–295.

    Google Scholar 

  • Jung P (1994) Threshold devices: Fractal noise and neural talk. Phys. Rev. E 50: 2513–2522.

    Google Scholar 

  • Le Van Quyen M, Martinerie J, Adam C, Varela F (1997) Unstable periodic orbits in human epileptic activity. Phys. Rev. E 56: 3401–3411.

    Google Scholar 

  • Longtin A, Hinzer K (1996) Encoding with bursting, subthreshold oscillations and noise in mammalian cold receptors. Neural Comp. 8: 217–257.

    Google Scholar 

  • Menendez de la Prida L, Stollenwerk N, Sanchez-Andres JV (1997) Bursting as a source for predictability in biological neural networks activity. Physica D 110: 323–331.

    Google Scholar 

  • Narayanan K, Govindan R, Gopinathan M (1998) Unstable periodic orbits in human caridac rhythms. Phys. Rev. E 57: 4594–4603.

    Google Scholar 

  • Neiman A, Schimansky-Geier L (1994) Stochastic resonance in bistable systems driven by harmonic noise. Phys. Rev. Lett. 72: 2988–2991.

    Google Scholar 

  • Pei X, Dolan K, Moss F, Lai Y-C (1998) Counting unstable periodic orbits in noisy chaotic systems: A scaling relation connecting experiment with theory. Chaos 8: 853–860.

    Google Scholar 

  • Pei X, Moss F (1996a) Detecting low-dimensional dynamics in biological experiments. Intern. J. Neural Syst. 7: 429–435.

    Google Scholar 

  • Pei X, Moss F (1996b) A statistical measure of unstable periodic orbits in the crayfish caudal photoreceptor. Nature 379: 618–621.

    Google Scholar 

  • Pierson D, Moss F (1995) Detecting periodic unstable points in noisy chaotic and limit cycle attractors with applications to biology. Phys. Rev. Lett. 75: 2124–2127.

    Google Scholar 

  • Sauer T (1994) Reconstruction of dynamical systems from interspike intervals. Phys. Rev. Lett. 72: 3811–3814.

    Google Scholar 

  • Sauer T (1995) Interspike interval embedding of chaotic signals. Chaos 5: 127–132.

    Google Scholar 

  • Schäfer K, Braun HA, Bretschneider F, Teunis PFM, Peters RC (1990) Ampullary electroreceptors in catfish (Teleostei): Temperature dependence of stimulus transduction. Pflügers Arch. Eur. J. Physiol. 429: 378–385.

    Google Scholar 

  • Schiff S, Jerger K, Duong D, Chang T, Spano M, Ditto W (1994) Controlling chaos in the brain. Nature 370: 615–620.

    Google Scholar 

  • Schmelcher P, Diakonos FK (1997) Detecting unstable periodic orbits of chaotic dynamical systems. Phys. Rev. Lett. 78: 4733–4736.

    Google Scholar 

  • Schmelcher P, Diakonos FK (1998) General approach to the localization of unstable periodic orbits in chaotic dynamical systems. Phys. Rev. E 57: 2739–2746.

    Google Scholar 

  • Schreiber T (1998) Constrained randomization of time series data. Phys. Rev. Lett. 80: 2105–2108.

    Google Scholar 

  • So P, Francis J, Netoff T, Gluckman B, Schiff S (1998) Periodic orbits: A new language for neuronal dynamics. Biophys. J. 74: 2776–2785.

    Google Scholar 

  • So P, Ott E, Sauer T, Gluckman BJ, Grebogi C, Schiff SJ (1997) Extracting unstable periodic orbits from chaotic time-series data. Phys. Rev. E. 55: 5398–5417.

    Google Scholar 

  • So P, Ott E, Schiff SJ, Kaplan DT, Sauer T, Grebogi C (1996) Detecting unstable periodic orbits in chaotic experimental data. Phys. Rev. Lett. 76: 4705–4708.

    Google Scholar 

  • Strogatz SH (1994) Nonlinear Dynamics and Chaos. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: The method of surrogate data. Physica D 58: 77–94.

    Google Scholar 

  • Uhlenbeck GE, Ornstein LS (1930) On the theory of the Brownian motion. Phys. Rev. 36: 823–841.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, H.A., Dewald, M., Schäfer, K. et al. Low-Dimensional Dynamics in Sensory Biology 2: Facial Cold Receptors of the Rat. J Comput Neurosci 7, 17–32 (1999). https://doi.org/10.1023/A:1008911409355

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008911409355

Navigation