Skip to main content
Log in

Effect of Chemical Modification on Hydrolysis and Condensation Reaction of Zirconium Alkoxide

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Chemical modification effect of acetic acid was examined to control the hydrolysis and following condensation reaction of zirconium alkoxide. When acetic acid was added to zirconium alkoxide solution, acetic acid coordinated to a zirconium alkoxide to form a stable bidentate chelating compound if molar ratio of acetic acid to zirconium alkoxide (here after abbreviated as RA) was less than two. In the case of simultaneous addition of acetic acid and water into a zirconium alkoxide solution, acetic acid immediately reacted with alkoxide. Water reacted with residual functional alkoxy groups to proceed the following condensation. Changing the degree of chelating the acetic acid to a zirconium alkoxide led to the control of the hydrolysis and condensation by decreasing the alkoxy groups of zirconium alkoxide. Polymeric transparent monolithic gels could be successfully prepared in the range from RA = 1 to RA = 1.5, and from RW = 1 to RW = 1.5 (here RW means molar ratio of water to zirconium alkoxide), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Fegley and E.A. Barringer, in Better Ceramics Through Chemistry, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (Elsevier, New York, 1984), pp. 187–197.

    Google Scholar 

  2. B. Fegley, P. White, and H.K. Bowen, Am. Ceram. Soc. Bull. 64, 1115–1119 (1985).

    Google Scholar 

  3. K. Uchiyama, T. Ogihara, T. Ikemoto, N. Mizutani, and M. Kato, J. Mater. Sci. 22, 4343–4347 (1987).

    Google Scholar 

  4. M. Nogami and Y. Moriya, J. Non-Cryst. Solids 37, 191–201 (1980).

    Google Scholar 

  5. K. Kamiya and T. Hashimoto, J. Mater. Sci. Lett. 9, 1341–1344 (1990).

    Google Scholar 

  6. B. Karmaker, G.D.D. Kundu, and D. Ganguli, J. Non-Cryst. Solids 135, 29–36 (1991).

    Google Scholar 

  7. H. Saito, H. Suzuki, and H. Hayashi, J. Chem. Soc. Jpn. 1571–1578 (1988).

  8. H. Suzuki, H. Saito, and H. Hayashi, Better Ceramics Through Chemistry V, edited by M.J. Hampeden-Smith, W.G. Klemperer, and C.J. Brinker (MRS, Pennsylvania, 1992), pp. 83–88.

    Google Scholar 

  9. H. Hayashi, H. Suzuki, and H. Saito, J. Ceram. Soc. Jpn. 100, 122–127 (1992).

    Google Scholar 

  10. C. Sanchez, J. Livage, M. Henry, and F. Balonneau, J. Non-Cryst. Solids 100, 65–76 (1988).

    Google Scholar 

  11. G. Yi and M. Sayer, J. Sol-Gel Sci. Tech. 6, 65–74 (1996).

    Google Scholar 

  12. G. Yi and M. Sayer, J. Sol-Gel Sci. Tech. 6, 75–82 (1996).

    Google Scholar 

  13. D.C. Bradley, R.C. Mehotra, and D.P. Gaur, Metal Alkoxides (Academic Press, New York, 1978).

    Google Scholar 

  14. N.W. Alcock, V.M. Tracy, and T.C. Waddington, J. Chem. Soc. Dalton, 2243 (1976).

  15. Von K.H. Thiele and M. Pause, Z. Anorg, Allg. Chem. 441, 23 (1978).

    Google Scholar 

  16. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (John Wiley & Sons, New York, 1963).

    Google Scholar 

  17. K.S. Mazdiyasni, C.T. Lynch, and J.S. Smith, J. Am. Ceram. Soc. 48, 372–375 (1965).

    Google Scholar 

  18. J.C. Debsikdar, J. Non-Cryst. Solids 86, 231–240 (1986).

    Google Scholar 

  19. D. Kundu and D. Ganguli, J. Mat. Sci. Lett. 5, 293–295 (1986).

    Google Scholar 

  20. P. Papet, N. Lebars, J.F. Baumard, A. Lecomte, and A. Dauger, J. Mat. Sci. 24, 3850–3854 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, H., Suzuki, H. & Kaneko, S. Effect of Chemical Modification on Hydrolysis and Condensation Reaction of Zirconium Alkoxide. Journal of Sol-Gel Science and Technology 12, 87–94 (1998). https://doi.org/10.1023/A:1008661227954

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008661227954

Navigation