Skip to main content
Log in

Some Inequalities for Superharmonic Functions on Graphs

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

An inequality for superharmonic functions on Riemannian manifolds due to S.Y. Cheng and S-T. Yau is adapted to the setting of graphs. A number of corollaries are discussed, including a Harnack inequality for graphs having at most quadratic growth and satisfying a certain connectedness condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brandt, A.: Estimates for difference quotients of solutions of Poisson type difference equations. Math. Comp. 20(1996), 473-499.

    Google Scholar 

  2. Cheng, S. Y. and Yau, S.-T.: Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math., 28(1976), 333-354.

    Google Scholar 

  3. Colin de Verdière, Y. and Mathéus, F.: (1992) Empilements de cercles et approximations conformes.Actes de la table ronde de géométrie différentielle, en l’honneur de Marcel Berger. Séminaires et Congrés, 1, collection SMF, A. Besse Eds (1996), 253-272.

  4. Delmotte, T.: Inégalité de Harnack elliptique sur les graphes.Coll. Math., to appear.

  5. Hebisch, W. and Saloff-Coste, L.: Gaussian estimates for Markov chains and random walks on groups. Ann. Prob. 21(1993), 673-709.

    Google Scholar 

  6. Holopainen, I. and Soardi, P.: Strong Liouville theorem for p -harmonic functions on graphs.Preprint 1996.

  7. Lawler, G.: Estimates for differences and Harnack inequality for difference operators coming from random walks with symmetric, spatially inhomogeneous increments. Proc. London Math. Soc. 63(1990), 552-568.

    Google Scholar 

  8. Mathéus, F.: Empilements de cercles et représentations conformes: une nouvelle preuve du théoreème de Rodin-Sullivan.L’enseignement mathématique, to appear.

  9. Merkov, A.: Second order elliptic equations on graphs. Math. USSR Sbornik, 55(1986), 493-509.

    Google Scholar 

  10. Moser, J.: On Harnack's theorem for elliptic differential equation. Comm. Pure Appl. Math. 14(1961), 577-591.

    Google Scholar 

  11. Rigoli, M., Salvatori, M. and Vignati, M.: Subharmonic functions on graphs. Israel Math. J., to appear, 1995.

  12. Rigoli, M., Salvatori, M. and Vignati, M.: A global Harnack inequality on graphs and some related consequences. Preprint, 1995.

  13. Rigoli, M., Salvatori, M. and Vignati M.: Liouville properties on graphs.Preprint, 1996.

  14. Saloff-Coste, L.: Inequalities for p-superharmonic functions on networks, Rendiconti Sem. Mat. Fis. Milano, to appear, 1996.

  15. Schinzel, A.: An analogue of Harnack's inequality for discrete superharmonic functions. Demonstratio Math. 11(1978), 47-60.

    Google Scholar 

  16. Soardi, P. M.: Potential Theory on infinite networks. Lecture Notes in Math., 1590. Springer, 1994.

  17. Varopoulos, N.: Potential theory and diffusion on Riemannian manifolds.Conference in harmonic analysis in honor of Antony Zygmund, Wadsworth, Belmont, California, 1983.

  18. Woess, W.: Random walks on infinite graphs and groups.Forthcoming book, 1996.

  19. Zhou, X. Y.: Green function estimates and their applications to the intersections of symmetric random walks. Stochastic Processes and their Applications 48(1993), 31-60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saloff-Coste, L. Some Inequalities for Superharmonic Functions on Graphs. Potential Analysis 6, 163–181 (1997). https://doi.org/10.1023/A:1008648421123

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008648421123

Navigation