Skip to main content
Log in

An NMR solution study of the mega-oligosaccharide, rhamnogalacturonan II

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Rhamnogalacturonan II (RG-II) is a structurally complex pectic mega-oligosaccharide that is released enzymatically from the primary cell wall of higher plants. It contains roughly 30 monosaccharide units (MW ∼5 kDa) including very unusual residues such as Kdo, Dha, aceric acid and apiose. Previous studies have demonstrated that these monomers are arranged into four structurally well-defined oligosaccharide side chains (A–D), linked to a homogalacturonan mainchain, but the specific attachment sites of these branches on the pectic backbone have not yet been elucidated. In the present work, fairly complete assignments of the 750 MHz 1 H NMR spectra and partial assignments of the 13 C NMR spectra of the sodium-borohydride-reduced RG-II monomer were obtained for a 5 mM sample isolated from red wine. On the whole, these data corroborate the primary structures of the sidechains previously established by methylation analysis, partial hydrolysis and FAB-MS spectrometry but some heterogeneity has been demonstrated (partial substitution at B5, B6, and A5). The preferred orientations of the majority of the sidechain glycosidic linkages in the RG-II monomer have been determined from the sequential nOe data and the solution structure is generally in good agreement with the stable conformers previously obtained by molecular modeling (MM3) of the disaccharide and sidechain oligosaccharide building blocks. All of a two-residue, a three-residue, and a four-residue segment of the backbone have been tentatively identified from long range interactions between sidechain protons as well as in the mainchain. Taking into account the length of the 9-mer galacturonan mainchain described in prior work, these building blocks constitute almost the complete structure of RG-II (Scheme 2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albersheim, P., An, J., Freshour, G., Fuller, M.S., Guillen, R., Ham, K.-S., Hahn, M.G., Huang, J., O'Neill, M., Whitcombe, A., Williams, M.V., York, W.S. and Darvill, A.G. (1994) Biochem. Soc. Trans., 22, 374–378.

    Google Scholar 

  • Allinger, N.L., Rhaman, M. and Lii, J.-H. (1990) J. Am. Chem. Soc., 112, 120–140.

    Google Scholar 

  • Angelotti, T., Krisko, M., O'Connor, T. and Serianni, A.S. (1987) J. Am. Chem. Soc., 109, 4464–4472.

    Google Scholar 

  • Aspinall, G.O. (1982) In Molecular Biology, An International Series of Monographs and Textbooks, The Polysaccharides, Vol. 1, Academic Press Inc., London, pp. 1–34.

    Google Scholar 

  • Backman, I., Jansson, P.E. and Kenne, L. (1990) J. Chem. Soc., Perkin Trans I, 1383–1388.

  • Baumann, H., Jansson, P.-E. and Kenne, L. (1991) J. Chem. Soc., Perkin Trans I, 2229–2232.

  • Bax, A., Griffey, R.H. and Hawkins, B.L. (1983) J. Magn. Reson., 55, 301–315.

    Google Scholar 

  • Bock, K., Josephson, S. and Bundle, D.R. (1982) J. Chem. Soc., Perkin Trans II, 59–70.

  • Bock, K. and Pedersen, C. (1983) Adv. Carbohydr. Chem. Biochem., 41, 27–66.

    Google Scholar 

  • Bock, K. and Thogersen, H. (1982) Annu. Rep. NMR Spectrosc., 13, 2–57.

    Google Scholar 

  • Bourlard, T., Pellerin, P. and Morvan, C. (1997) Plant Physiol. Biochem., 35, 623–629.

    Google Scholar 

  • Castro, V.H., Ramirez, E., Mora, G.A., Iwase, Y., Tsuneatsu, N., Okabe, H., Matsunaga, H., Katano, M. and Mori, M. (1997) Chem. Pharm. Bull., 45, 349–358.

    Google Scholar 

  • Cros, S., Herve du Penhoat, C., Bouchemal, N., Imberty, A. and Perez, S. (1992) Int. J. Biol. Macromol., 14, 313–320.

    Google Scholar 

  • Darvill, A.G., McNeil, M. and Albersheim, P. (1978) Plant Physiol., 62, 418–422.

    Google Scholar 

  • De Bruyn, A., Anteunis, M., De Gussem, R. and Dutton, G.G.S. (1975) Carbohydr. Res., 19, C9–C11.

    Google Scholar 

  • Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J. and Bax, A. (1995) J. Biomol. NMR, 6, 277–293.

    Google Scholar 

  • De Marco, A., Gariboldi, P., Molinari, H. and Verotta, L. (1992) Carbohydr. Res., 226, 15–27.

    Google Scholar 

  • Drake, L.R. and Rayson, G.D. (1996) Anal. Chem., 69, 22A–27A.

    Google Scholar 

  • Engelsen, S.B., Cros, S., Mackie, W. and Perez, S. (1996) Biopolymers, 39, 417–433.

    Google Scholar 

  • Fukuoka, S., Knirel, Y.A., Lindner, B., Moll, H., Seydel, U. and Zahringer, U. (1997) Eur. J. Biochem., 250, 55–62.

    Google Scholar 

  • Griesinger, C., Otting, G., Wüthrich, K. and Ernst, R.R. (1988) J. Am. Chem. Soc., 110, 7870–7872.

    Google Scholar 

  • Hofinger, A., Kosma, P., Christian, R., Bock, K. and Brade, H. (1993) Carbohydr. Res., 243, 273–291.

    Google Scholar 

  • Hricovini, M., Bystricky, S. and Malovikova, A. (1991) Carbohydr. Res., 243, 23–31.

    Google Scholar 

  • Ishii, T. and Matsunaga, T. (1996) Carbohydr. Res., 284, 1-9.

  • Ishii, T., Matsunaga, T., Shimokawa, T., O'Neill, M., Darvill, A. and Albersheim, P., 8th International Cell Wall Meeting, Norwich, 1998.

  • Jackson, P.L., Torres, A.T., Delhaize, E., Pack, E. and Bolender, S.L. (1990) J. Environ. Qual., 19, 644–648.

    Google Scholar 

  • Jeener, J., Meier, B.H., Bachmann, P. and Ernst, R.R. (1979) J. Chem. Phys., 71, 4546–4553.

    Google Scholar 

  • Joao, H.I., Jackson, G.E., Ravenscroft, N. and Stephen, A.M. (1988) Carbohydr. Res., 176, 300–305.

    Google Scholar 

  • Kobayashi, M., Matoh, T. and Azuma, J.-I. (1996) Plant Physiol., 110, 1017–1020.

    Google Scholar 

  • Koerner, T.A.W., Prestegard, J.H. and Yu, R.K. (1987) Methods Enzymol., 138, 38–59.

    Google Scholar 

  • Macura, S. and Ernst, R.R. (1980) Mol. Phys., 41, 95–117.

    Google Scholar 

  • Matoh, T., Ishigaki, K.-I., Kaori, O. and Azuma, J.-I. (1993) Plant Cell Physiol., 34, 639–642.

    Google Scholar 

  • Mazeau, K. and Perez, S. (1998) Carbohydr. Res., 311, 203–217.

    Google Scholar 

  • Mbairaroua, O., Ton-That, T. and Tapiero, C. (1994) Carbohydr. Res., 253, 79–99.

    Google Scholar 

  • Melton, L.D., McNeil, M., Darvill, A.G., Albersheim, P. and Dell, A. (1986) Carbohydr. Res., 146, 279–305.

    Google Scholar 

  • Nakahara, Y. and Ogawa, T. (1987) Carbohydr. Res., 167, C1–C7.

    Google Scholar 

  • O'Neill, M.A., Warrenfeltz, D., Kates, K., Pellerin, P., Doco, T., Darvill, A.G. and Albersheim, P. (1996) J. Biol. Chem., 271, 22923–22930; ibid 272, 3869.

    Google Scholar 

  • O'Neill, M., Albersheim, P. and Darvill, A.G. (1990) Methods Plant Biochem., 2, 415–441.

    Google Scholar 

  • Pellerin, P., Doco, T., Vidal, S., Williams, P., Brillouet, J.-M. and O'Neill, M.A. (1996) Carbohydr. Res., 290, 183–197.

    Google Scholar 

  • Peters, T. and Weimar, T. (1994) J. Biomol. NMR, 4, 97–116.

    Google Scholar 

  • Piantini, U., Sørensen, O.W., Bodenhausen, G., Wagner, G., Ernst, R.R. and Wüthrich, K. (1983) J. Am. Chem. Soc., 104, 6800–6801.

    Google Scholar 

  • Rance, M., Sørensen, O.W., Bodenhausen, G., Wagner, G., Ernst, R.R. and Wüthrich, K. (1983) Biochem. Biophys. Res. Commun., 117, 479–485.

    Google Scholar 

  • Rinaudo, M. and Ravanat, G. (1980) Makromol. Chem., 181, 1059–1070.

    Google Scholar 

  • Salt, D.E., Blaylock, M., Kumar, N.P.B.A., Dushenkov, V., Ensley, B.D., Chet, I. and Rashin, I. (1995) Biotechnology, 13, 468–474.

    Google Scholar 

  • Serianni, A.S. and Baker, R. (1979) Can. J. Chem., 57, 3160–3167.

    Google Scholar 

  • Shin, K.-S., Kiyohara, H., Matsumoto, T. and Yamada, H. (1997) Carbohydr. Res., 300, 239–249.

    Google Scholar 

  • Skelton, M.A., Cherniak, R., Poppe, L. and van Halbeek, H. (1991) Magn. Reson. Chem., 29, 786–793.

    Google Scholar 

  • Spellman, M.W., McNeil, M., Darvill, A.G., Albersheim, P. and Henrick, K. (1983) Carbohydr. Res., 122, 115–129.

    Google Scholar 

  • States, D.J., Haberkorn, R.A. and Ruben, D.J. (1982) J. Magn. Reson., 48, 286–292.

    Google Scholar 

  • Summers, M.F., Marzilli, L.G. and Bax, A. (1986) J. Am. Chem. Soc., 108, 4285–4294.

    Google Scholar 

  • Titel, C., Erfurt, J. and Ehwald, R., 8th International Cell Wall Meeting, Norwich, 1998.

  • Toman, R., Rosik, J. and Alfoldi, J. (1986) Carbohydr. Res., 158, 236–244.

    Google Scholar 

  • Whitcombe, A.J., O'Neill, M.A., Steffan, W., Albersheim, P. and Darvill, A.G. (1995) Carbohydr. Res., 271, 15–29.

    Google Scholar 

  • York, W.S., van Halbeek, H., Darvill, A.G. and Albersheim, P. (1990) Carbohydr. Res., 200, 9–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

du Penhoat, C.H., Gey, C., Pellerin, P. et al. An NMR solution study of the mega-oligosaccharide, rhamnogalacturonan II. J Biomol NMR 14, 253–271 (1999). https://doi.org/10.1023/A:1008312423877

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008312423877

Navigation