Skip to main content
Log in

Spin Injection and Transport in Magnetic-Superconducting Oxide Heterostructures

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

Advances in thin film deposition techniques, in particular molecular beam epitaxy, have made it possible to produce bilayer heterostructures of high-temperature superconductors and manganite perovskites. The latter exhibit the phenomenon of colossal magnetoresistance (CMR). The half-metallic character of CMR compounds results in their carriers being spin polarized. The geometry of the structures that have been fabricated is such that it is possible to measure the interface conductance–voltage characteristic G(V) as well as the current–voltage characteristic of the superconducting half of the bilayer. Injection of carriers suppresses superconductivity in the latter, with a current gain of order unity. The data exhibit qualitative features of equilibrium theories of spin-polarized transport across an interface between a ferromagnet and an anisotropic superconductor, although a detailed understanding requires generalization of the theory to include out of equilibrium effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Pulsed Laser Deposition of Thin Films, Douglas B. Chrisey and Graham K. Hubler, eds. (John Wiley & Sons, New York, 1994).

    Google Scholar 

  2. D. G. Schlom and J. S. Harris, Jr., in Molecular Beam Epitaxy: Applications to Key Materials, R. F. C. Farrow, ed. (Noyes Publications, Park Ridge, 1995), p. 505.

    Google Scholar 

  3. A. P. Ramirez, J. Phys.: Condens. Matter 9, 8171 (1997).

    Google Scholar 

  4. J. Bass, W. P. Pratt, Jr., and P. A. Schroeder, Comments Cond. Mat. Phys. 18, 223 (1998).

    Google Scholar 

  5. N.–C. Yeh, private communtication.

  6. Masahiro Kasai, Toshiyyuki Ohono, and Yuzoo Kozono, Mod. Phys. Lett. B 7, 1923 (1993).

    Google Scholar 

  7. A. J. Millis, T. Darling, and A. Migliori, J. Appl. Phys. 83, 1588 (1998).

    Google Scholar 

  8. J. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993); J. von Helmolt, J.Wecker, K. Samwer, L. Haupt, and K. Bärner, J. Appl. Phys. 76, 6925 (1994); Ken–ichi Chahara, Toshiyuki Ohno, Masahiro Kasai, and Yuzoo Kozono, Appl. Phys. Lett. 63, 1990 (1993).

    PubMed  Google Scholar 

  9. R. Pauthenet and C. Veyret, J. Phys. 31, 65 (1970).

    Google Scholar 

  10. E. O. Wollan and W. C. Koehler, Phys. Rev. 19, 120 (1953).

    Google Scholar 

  11. E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).

    Google Scholar 

  12. G. H. Jonker and J. H. Van Santen, Physica 16, 22 (1950).

    Google Scholar 

  13. L. F. Schneemeyer, J. V. Waszczak, S. M. Zahorak, R. B. van Dover, and T. Siegrist, Mat. Res. Bull. 22, 1467 (1987).

    Google Scholar 

  14. M. A. Beno, L. Soderholm, D.W. Capone II, D. G. Hinks, J. D. Jorgensen, J. D. Grace, I. K. Schuller, C. U. Segre, K. Zhang, Appl. Phys. Lett. 51, 57 (1987).

    Google Scholar 

  15. R. Osgood, private communication.

  16. J. G. Bednorz and K. Muller, Z. Phys. B 64, 18 (1986).

    Google Scholar 

  17. V. A. Vas'ko, V. A. Larkin, P. A. Kraus, K. R. Nikolaev, D. E. Grupp, C. A. Nordman, and A. M. Goldman, Phys. Rev. Lett. 78, 1134 (1997).

    Google Scholar 

  18. S. J. Rothman, J. L. Routbort, and U. Welp, Phys. Rev. B 44, 2326 (1991).

    Google Scholar 

  19. D. J. Van Harlingen, Rev. Mod. Phys. 67, 515 (1995).

    Google Scholar 

  20. C. Zener, Phys. Rev. 82, 402 (1951).

    Google Scholar 

  21. P. G. de Gennes, Phys. Rev. 118, 141 (1960).

    Google Scholar 

  22. P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).

    Google Scholar 

  23. R. M. Kusters, J. Singleton, D. A. Keen, R. McGreevy, and W. Hayes, Physica B 15, 362 (1989).

    Google Scholar 

  24. S. Satpathy, Z. S. Popovic, and F. R. Vukajlovic, Phys. Rev. Lett. 76, 960 (1996).

    PubMed  Google Scholar 

  25. W. E. Pickett and D. J. Singh, Phys. Rev. B 53, 1146 (1996).

    Google Scholar 

  26. J. Z. Sun, L. Krusin–Elbaum, P. R. Duncombe, A. Gupta, and R. B. Laibowitz, Appl. Phys. Lett. 70, 1769 (1997).

    Google Scholar 

  27. J. Y. T. Wei, N.–C. Yeh, and R. P. Vasquez, Phys. Rev. Lett. 79, 5150 (1997).

    Google Scholar 

  28. R. J. Soulen, J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, J. M. D. Coey, Science 282, 85 (1998).

    PubMed  Google Scholar 

  29. J.–H. Park, E. Vescova, H. J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Phys. Rev. Lett. 81, 1953 (1998).

    Google Scholar 

  30. A. J. Millis, P.B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5114 (1955).

    Google Scholar 

  31. Z. W. Dong, R. Ramesh, T. Venkatesan, Mark Johnson, Z. Y. Chen, S. P. Pai, V. Talyansky, R. P. Sharma, R. Shreekala, C. J. Lobb, and R. L. Greene, Appl. Phys. Lett. 71, 1718 (1997).

    Google Scholar 

  32. Daniel Koller, M. S. Osofsky, D. B. Chrisey, J. S. Horwitz, R. J. Soulen, Jr., R. M. Stroud, C. R. Eddy, J. Kim, R. C. Y. Auyeung, J. M. Byers, B. F. Woodfield, G. M. Daly, T. W. Clinton, and Mark Johnson, J. Appl. Phys. 83, 6774 (1998).

    Google Scholar 

  33. N. C. Yeh, R. P. Vasquez, C. C. Fu, A. V. Samoilov, Y. Li, and K. Vakili, Phys. Rev. B 60, 10522 (1999).

    Google Scholar 

  34. A. Sawa, T. Shimizu, H. Obara, H. Yamasaki, in Advances in Superconductivity XI., Proceedings of the 11th International Symposium on Superconductivity (ISS'98). Springer–Verlag. Part 2, 1999, pp. 1159–1162; A. Sawa, S. Kashiwaya, H. Obara, H. Yamasaki, M. Koyanagi, cond–mat/9908431.

  35. Jean–Pierre Locquet, André Catana, Erich Mächler, Christoph Gerber, and J. Georg Bednorz, Appl. Phys. Lett. 64, 372 (1994).

    Google Scholar 

  36. V. A. Vas'ko, C.A. Nordman, P. A. Kraus, V. S. Achutharaman, A. R. Ruosi, and A. M. Goldman, Appl. Phys. Lett. 68, 2571 (1996).

    Google Scholar 

  37. V. A. Vas'ko, K. R. Nikolaev, V. A. Larkin, P. A. Kraus, and A. M. Goldman, Appl. Phys. Lett. 73, 844 (1998).

    Google Scholar 

  38. I. Zutic and O. T. Valls, Phys. Rev. B 60, 6320 (1999).

    Google Scholar 

  39. J. X. Zhu, B. Friedman, and C. S. Ting, Phys. Rev. B 59, 9558 (1999).

    Google Scholar 

  40. S. Kashiwaya, Y. Tanaka, N. Yoshida, and M. R. Beasley, Phys. Rev. B 60, 3572 (1999); S. Takahashi, H. Imamura, and S. Maekawa, Phys. Rev. Lett. 82, 3911 (1999).

    Google Scholar 

  41. A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964).

    Google Scholar 

  42. L. Ozyuzer, J. F. Zasadzinski, and N. Miyakawa, Int. J. Mod. Phys. B 13, 3721 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldman, A.M., Kraus, P.I., Nikolaev, K. et al. Spin Injection and Transport in Magnetic-Superconducting Oxide Heterostructures. Journal of Superconductivity 14, 283–290 (2001). https://doi.org/10.1023/A:1007828505924

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007828505924

Navigation