Skip to main content
Log in

Injectable Chemotherapeutic Microspheres and Glioma II: Enhanced Survival Following Implantation into Deep Inoperable Tumors

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Delivery of chemotherapeutics using implantable,biodegradable polymers provides a potentially powerful method of treating braintumors. The present studies examined the ability of injectablemicrospheres, formulated to release carboplatin or BCNU for 2–3 weeks,to enhance survival in a rodent model of deep, inoperable glioma.

Methods. Rat glioma (RG2) cells were implanted into the striatum ofrats. In a first experiment, the tumors were allowed to grow for 3 days,followed by either no treatment, bolus chemotherapy (100 μg), orimplantation of microspheres containing 10, 50, or 100 μg ofcarboplatin. The microspheres were implanted, via hypodermic injection,directly into the center of the small, 3-day-old tumors. In a secondexperiment, tumors grew for 8 days prior to treatment with eithercarboplatin- or BCNU-loaded microspheres. The microspheres werethen injected either directly into the center of these larger tumors orinto three sites along the perimeter of the tumor. Separate sets ofanimals received bolus chemotherapy (100 μg) into either the tumorcenter or around the tumor perimeter.

Results. Injection of carboplatin-loaded microspheres into the centerof the small 3 day old, tumors produced dose-related increases insurvival. When injections of carboplatin- or BCNU-loadedmicrospheres were made into the center of the larger, 8-day-old tumors,survival was not enhanced. However, when the microspheres wereinjected along the perimeter of the larger tumors, sustained-releasechemotherapy did significantly prolong survival. Bolus chemotherapywas less effective than sustained release chemotherapy.

Conclusions. Together, these data: (1) demonstrate that sustaineddelivery of chemotherapy in or near the tumor site is superior toequipotent bolus doses in inoperable tumors, (2) demonstrate thatinjection of sustained release microspheres into the tissue surroundinga growing tumor may provide superior effects over injections directlyinto the tumor mass, and (3) suggest that this approach may providea useful means of selectively delivering chemotherapeutics to tumorsor portions of tumors that cannot otherwise be treated with conventionalsurgical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. M. Black. Brain tumors, part I. N. Engl. J. Med. 324:1471–1476 (1991).

    Google Scholar 

  2. R. J. Tamargo, J. S. Myseros, J. I. Epstein, M. B. Jang, M. Chasin, and H. Brem. Interstitial chemotherapy of the 9L gliosarcoma: controlled release polymers for drug delivery to the brain. Cancer Res. 53:329–333 (1993).

    Google Scholar 

  3. K. A. Walter, M. A. Cahan, A. Gur, B. Tyler, J. Hilton, O. M. Colvin, P. C. Burger, A. Domb, and H. Brem. Interstitial taxol delivered from a biodegradable polymer implant against experimental malignant glioma. Cancer Res. 54:2207–2212 (1994).

    Google Scholar 

  4. K. O. Lillehei, Q. Kong, S. J. Withrow, and B. Kleinschmidt-DeMasters. Efficacy of intralesionally administered cisplatin-impregnated biodegradable polymer for the treatment of 9L gliosarcoma in the rat. Neurosurgery 39:1191–1197 (1996).

    Google Scholar 

  5. P. Menie, M. Boisdron-Celler, A. Croue, G. Guy, and J.-P. Benoit. Effect of stereotactic implantation of biodegradable 5-Fluoroacil-loaded microspheres in healthy and C6 glioma-bearing rats. Neurosurgery 39:117–123 (1996).

    Google Scholar 

  6. A. Olivi, M. G. Ewend, T. Utsuki, B. Tyler, A. J. Domb, D. J. Brat, and H. Brem. Interstitial delivery of carboplatin via biodegradable polymers is effective against experimental glioma in the rat. Cancer Chemother. Pharmacol. 39:90–96 (1996)

    Google Scholar 

  7. H. Brem, M. S. Mahaley, N. A. Vick, K. L. Black, S. C. Schold, T. W. Eller, J. W. Cozzens, and J. N. Kenealy. Interstitial chemotherapy with drug polymer implant for the treatment of recurrent gliomas. J. Neurosurg. 74:441–446 (1991).

    Google Scholar 

  8. H. Brem, M. G. Ewend, S. Piantadosi, J. Greehoot, P. C. Burger, and M. Sisti. The safety of interstitial chemotherapy with BCNU-loaded polymer followed by radiation therapy in the treatment of newly diagnosed malignant gliomas: phase I trial. J. Neuro-oncol. 26:111–123 (1995).

    Google Scholar 

  9. H. Brem, S. Piantadosi, P. C. Burger, M. Walker, R. Selker, N. A. Vick, K. L. Black, M. Sisti, S. Brem, G. Mohr, P. Muller, R. Morawetz, and R. Schold. Placebo-controlled trials of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chermotherapy for recurrent gliomas. Lancet 345:1008–1012 (1995).

    Google Scholar 

  10. K. A. Walter, R. J. Tamargo, A. Olivi, P. C. Burger, and H. Brem. Intratumoral chemotherapy. Neurosurgery 37:1129–1145 (1995).

    Google Scholar 

  11. F. H. Hochberg and A. Pruitt. Assumptions in the radiotherapy of glioblastoma. Neurology 30:907–911 (1980).

    Google Scholar 

  12. O. Ike, Y. Shimizu, R. Wada, S.-H. Hyon, and Y. Ikada. Controlled cisplatin delivery system using poly(DL-lactic acid). Biomaterials 13:230–234 (1992).

    Google Scholar 

  13. M. Boisdron-Celle, P. Menei, and J. P. Benoit. Preparation and characterization of 5-Fluorocil-loaded microparticles as biodegradable anticancer drug carriers. J. Pharm. Pharmacol. 47:108–114 (1995).

    Google Scholar 

  14. P. Menie, M.-C. Venier, E. Gamelin, J.-P. Saint-Andre, G. Hayek, E. Jadaud, D. Fournier, P. Mercer, G. Guy, and J.-P. Benoit. Local and sustained delivery of 5-Fluoracil from biodegradable microspheres for the radiosensitization of glioblastoma. Cancer 86:325–330 (1999).

    Google Scholar 

  15. J. H. Kou, C. Emmet, P. Shen, S. Aswani, T. Iwamoto, F. Vaghefi, and L. Sanders. Brain biocompatibility of poly(D,L-lactic acid-co-glycolic acid) implants. Pharm. Res. Suppl. 12:S-194 (1995).

    Google Scholar 

  16. D. F. Emerich, M. A. Tracy, K. L. Ward, M. Figueredo, R. Qian, C. Henschell, and R. T. Bartus. Biocompatibility of Poly (DL-Lactide-co-Glycolide) microspheres implanted into the brain. Cell Tanspl. 8:47–58 (1999).

    Google Scholar 

  17. D. F. Emerich, S. R. Winn, J. Marsh, P. Snodgrass, B. P. Hasler, and R. T. Bartus. Injectable chemotherapeutic microspheres and glioma I: enhanced survival following implantation into the cavity wall of debulked tumors. Pharm. Res. 17:767–775 (2000).

    Google Scholar 

  18. D. F. Emerich, P. Snodgrass, R. Dean, M. Agostino, B. Hasler, M. Pink, H. Xiong, B. S. Kim, and R. T. Bartus. Enhanced delivery of carboplatin into brain tumors with intraveneous Cereport (RMP-7): dramatic differences and insight gained from dosing parameters. Brit. J. Cancer 80:964–970 (1999).

    Google Scholar 

  19. G. Paxinos and C. Watson. The Rat Brain in Stereotaxic Coordinates. Academic Press, Sydney, 1986.

    Google Scholar 

  20. R. T. Bartus, P. Snodgrass, J. Marsh, M. Agostino, A. Perkins, and D. F. Emerich. Intravenous Cereport (RMP-7) modifies topographic uptake profile of carboplatin within rat glioma and brain surrounding tumor, elevates platinum levels and enhances survival. J. Pharmacol. Exp. Ther., (in press).

  21. K. G. Buahin and H. Brem. Interstitial chemotherapy of experimental brain tumors: comparison of intratumoral injection versus polymeric controlled release. J. Neuro-oncol. 26:103–110 (1995).

    Google Scholar 

  22. M. Mak, L. Fung, J. F. Strasser, and W. M. Saltzman. Distribution of drugs following controlled delivery to the grain interstitum. J. Neuro-oncol. 26:91–102 (1995).

    Google Scholar 

  23. S. S. Prabhu, W. C. Broaddus, G. T. Gillies, W. G. Loudon, Z.-J. Chen, and B. Smith. Distribution of macromolecular dyes in brain using positive pressure infusion: A model for direct controlled delivery of therapeutic agents. Surg. Neurol. 50:367–375 (1998).

    Google Scholar 

  24. M. J. Mahoney and W. M. Saltzman. Millimeter-scale positioning of a nerve-growth-factor source and biological activity in the brain. Proc. Natl. Acad. Sci. USA 96:4536–4539 (1999).

    Google Scholar 

  25. H. F. Cserr and L. H. Ostrach. Bulk flow of interstitial fluid after intracranial injection of blue dextran 200. Exp. Neurol. 45:50–60 (1974).

    Google Scholar 

  26. C. P. Geer and S. A. Grossman. Interstitial fluid flow along white matter tracts: A potentially important mechanism for the dissemination of primary brain tumors. J. Neuro-oncol. 32:193–201 (1997).

    Google Scholar 

  27. C. Nicholson. Signals that go with the flow. TINS 22:143–145 (1999).

    Google Scholar 

  28. P. C. Burger, P. J. Dubois, S. C, Schold, K. R. Smith, G. L. Odom, and D. C. Crafts. Computerized tomographic and pathologic studies of untreated, quiescent, and recurrent glioblastoma multiforme. J. Neurosurg. 58:159–169 (1983).

    Google Scholar 

  29. M. Rosenblum, A. Eisenberg, and D. Norman. Brain tumor invasion: clinical patterns of malignant astrocytoma spread. Proc. Am. Soc. Clin. Oncol. 11:148 (1992).

  30. B. A. Wie, S. A. Grossman, M. D. Wharam, and M. Chun. Dissemination of high grade astrocytomas along white matter tracts: Observations and therapeutic implications. Proc. Am. Soc. Clin. Oncol. 12:177 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emerich, D.F., Winn, S.R., Snodgrass, P. et al. Injectable Chemotherapeutic Microspheres and Glioma II: Enhanced Survival Following Implantation into Deep Inoperable Tumors. Pharm Res 17, 776–781 (2000). https://doi.org/10.1023/A:1007591721877

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007591721877

Navigation