Skip to main content
Log in

Estimation of Molecular Linear Free Energy Relationship Descriptors. 4. Correlation and Prediction of Cell Permeation

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The passage of molecules across cell membranes is acrucial step in many physiological processes. We therefore seek physicalmodels of this process, in order to predict permeation for new molecules,and to better understand the important interactions which determinethe rate of permeation.

Methods. Several sets of cell permeation data reported byCollander have been correlated against calculated Linear Free Energy Relation(LFER) descriptors. These descriptors, taken as the sum of fragmentalcontributions, cover the size, polarity, polarizabilty, and hydrogenbonding capacity of each molecule.

Results. For 36 values permeation into Chara ceratophyllacells, a model (sd = 0.24) dominated by hydrogen bond acidity is found, whilefor 63 rates of permeation values into Nitella cells a very similar modelyields sd = 0.46. Comparisons between the two cell types are madedirectly for 17 compounds in both data sets, indicate differences of asimilar magnitude to the standard deviations of the above models. Thetwo data sets can be combined to yield a generic model of rates ofpermeation into cells, resulting in an sd value of 0.46 for a total of100 data points.

Conclusions. Models allowing accurate prediction of cell permeationhave been constructed using 100 experimental data. We demonstratethat hydrogen bond acidity is the dominating factor in determining cellpermeation for two distinct species of algal cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. J. Scheuplein and R. L. Bronaugh, Percutaneous absorption, in; Goldsmith, L. A. (ed), Biochemistry and physiology of the skin, O.U.P., New York, pp. 1255¶ 1295.

  2. T. Yano, A. Nakagawa, M. Tsuji, and K. Noda. Skin permeability of various non-steroidal anti-inflammatory drugs in man. Life Sci. 39:1043–1050 (1986).

    Google Scholar 

  3. See for example: K. Arimori and M. Nakano. Drug exsorption from blood into the gastro-intestinal tract. Pharm. Res. 15:371–376 (1998).

    Google Scholar 

  4. A. Wilschut, W. F. ten Berge, P. J. Robinson, and T. E. McKone. Estimating skin permeation: The validation of five mathematical skin permeation models. Chemosphere 30:1275–1296 (1995).

    Google Scholar 

  5. (a) E. J. Lien and H. Gao. QSAR analysis of skin permeability of various drugs in man as compared to in vivo and in vitro studies in rodents. Pharm. Res. 12:583–587 (1995). (b) R. O. Potts and R. H. Guy. A predictive algorithm for skin permeability· the effects of molecular size and hydrogen bond activity. Pharm. Res. 12:1628¶ 1633 (1995).

    Google Scholar 

  6. M. H. Abraham, F. Martins, and R. C. Mitchell. Algorithms for skin permeability using hydrogen bond descriptors: The problem of steroids. J. Pharm. Pharmacol. 49:858–865 (1997).

    Google Scholar 

  7. O. A. Raevsky and K.-J. Schaper. Quantitative estimation of hydrogen bond contribution to permeability and absorption processes of some chemicals and drugs. Eur. J. Med. Chem. 33:799–807 (1998).

    Google Scholar 

  8. R. Collander and H. Bärlund. Permeabilitätsstudien an chara ceratophylla. Acta Bot. Fenn.bd11:1–112 (1933).

    Google Scholar 

  9. R. Collander. The permeability of Nitella cells to non-electrolytes. Physiologia Plantarum 7:420–445 (1954).

    Google Scholar 

  10. R. Collander. On lipoid solubility. Acta Physiol. Scand. 13:363–381 (1947).

    Google Scholar 

  11. M. H. Abraham. Scales of solute hydrogen bonding· their construction and application to physicochemical and biochemical processes. Chem. Soc. Revs. 22:73–83 (1993).

    Google Scholar 

  12. M. H. Abraham, H. S. Chadha, F. Martins, R. C. Mitchell, M. W. Bradbury, and J. A. Gratton. Hydrogen bonding Part 46: A review of the correlation and prediction of transport properties by an LFER method: physicochemical properties, brain penetration, and skin permeability Pestic. Sci. 55:78–88 (1999).

    Google Scholar 

  13. M. H. Abraham and J. C. McGowan. The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography. Chromatographia 23:243–246 (1987).

    Google Scholar 

  14. J. A. Platts, D. Butina, M. H. Abraham, and A. Hersey. Estimation of molecular linear free energy relationship descriptors using a group contributrion method. J. Chem. Inf. Comput. Sci. 39:835–845 (1999).

    Google Scholar 

  15. J. A. Platts, M. H. Abraham, D. Butina, and A. Hersey. J. Chem. Inf. Comput. Sci. 40:71–80 (2000).

    Google Scholar 

  16. P. Seiler. Interconversion of lipophilicities from hydrocarbon/water systems into the octanol/water system. Eur. J. Med. Chem. 9:473–479 (1974).

    Google Scholar 

  17. N. El Tayar, R. S. Tsai, B. Testa, P.-A. Carrupt, A. J. Leo. Partitioning of solutes in different solvent systems: The contribution of hydrogen-bonding capacity and polarity. Pharm. Sci. 80:590–598 (1991).

    Google Scholar 

  18. M. H. Abraham, H. S. Chadha, G. S. Whiting, and R. C. Mitchell. Hydrogen bonding. 32. an analysis of water-octanol and water-alkane partitioning, and the DlogP parameter of Seiler. J. Pharm. Sci. 83:1085–1100 (1994).

    Google Scholar 

  19. D. A. Paterson, R. A. Conradi, A. R. Hilgers, T. J. Vidmar, and P. S. Burton. A non-aqueous partitioning system for predicting the oral absorption potential of peptides. Quant. Struct.-Act. Relat. 13:4–10 (1994).

    Google Scholar 

  20. M. H. Abraham, F. Martins, R. C. Mitchell, and C. J. Salter. Hydrogen bonding. 47. Characterization of the ethylene glycolheptane partition system: Hydrogen bond acidity and basicity of peptides. J. Pharm. Sci. 88:241–247 (1999).

    Google Scholar 

  21. Y. Ishihama and N. Asakawa. Characterization of lipophilicity scales using vectors from solvation energy descriptors. J. Pharm. Sci. 88: 1305–1312 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Platts, J.A., Abraham, M.H., Hersey, A. et al. Estimation of Molecular Linear Free Energy Relationship Descriptors. 4. Correlation and Prediction of Cell Permeation. Pharm Res 17, 1013–1018 (2000). https://doi.org/10.1023/A:1007543708522

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007543708522

Navigation