Skip to main content
Log in

Bradykinin and α-Thrombin Increase Human Umbilical Vein Endothelial Macromolecular Permeability by Different Mechanisms

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Bradykinin and α-thrombin both increase endothelial macromolecular permeability, however the mechanism for this effect is unclear. Human umbilical vein endothelial cell (HUVEC) permeability to human serum albumin was increased by 1 μM α-thrombin (AT) or bradykinin (BK), but the kinetics of the permeability response were different. Intracellular calcium mobilization of HUVEC by AT was increased, yet BK had no effect on intracellular calcium. Distribution of F-actin and content was increased by AT as early as 10 minutes after administration, yet BK had no affect on F-actin when compared to control. We hypothesized that BK may increase HUVEC permeability by producing matrix metalloproteinase-2 (MMP-2). The AT-treated HUVEC produced an intermediate 64 kDa MMP-2, whereas BK-treated HUVEC increased the intermediate 64 kDa MMP-2 and also an active 62 kDa MMP-2. Pre-treatment of the HUVEC with tissue inhibitor of matrix metalloproteinase-2 slightly decreased the AT-induced increase in macromolecular permeability and completely inhibited the BK-induced increase in macromolecular permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. BALMFORTH, A. J., F. E. PARKINSON, N. ALTIOK, and B. B. FREDHOM. 1992. Identification of a B2-bradykinin receptor linked to phospholipase C and inhibition of dopamine stimulated cyclic AMP accumulation in the human astrocytoma cell line D384. Arch. Pharmacol. 346:303-310.

    Google Scholar 

  2. HURLEY, J. V. 1982. Types of pulmonary microvascular injury. Ann. N.Y. Acad. Sci., 384:269-286.

    Google Scholar 

  3. HE, P., S. N. PAGAKIS, and F. E. CURRY. 1990. Measurements of cytoplasmic calcium in single microvessels with increased permeability. Am. J. Physiol. (Heart Circ. Physiol.): H1366-H1374.

  4. HANEMAAIJER, R., P. KOOLWIJK, L. LECLERC, W. J. A. VREE, and W. M. VAN HINSBERGH. 1993. Regulation of matrix metalloproteinase expression in human vein and microvascular endothelial cells. Biochem. J., 296:803-809.

    Google Scholar 

  5. ASCHNER, J. L., H. LUM, P. W. FLETCHER, and A. B. MALIK. 1997. Bradykinin and thrombin-induced increases in endothelial permeability occur independently of phospholipase C but require protein kinase C activation. J. Cell. Physiol., 173:387-396.

    Google Scholar 

  6. EHRINGER, W. D., M. J. EDWARDS, R. D. GRAY, and F. N. MILLER. 1997. Bradykinin antagonizes the effects of α-thrombin. Inflammation 21:279-298.

    Google Scholar 

  7. EHRINGER, W. D., M. J. EDWARDS, and F. N. MILLER. 1996. Mechanisms of α-thrombin, histamine, and bradykinin induced endothelial permeability. J. Cell Physiol., 167:562-569.

    Google Scholar 

  8. SIFLINGER-BIRNBOIM, A., P. J. DEL VECCHIO, J. A. COOPER, F. A. BLUMENSTOCK, J. M. SHEPARD, and A. B. MALIK. 1987. Molecular sieving characteristics of the cultured endothelial monolayer. J. Cell Physiol. 132:111-117.

    Google Scholar 

  9. GHITESCU, L., A. FIXMAN, M. SIMIONESCU, and N. SIMIONESCU. 1986. Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: Receptor-mediated transcytosis. J. Cell Biol. 102:1304-1311.

    Google Scholar 

  10. PARTRIDGE, C. A., J. J. JEFFREY, and A. B. MALIK. 1993. A 96 kDa gelatinase induced by TNF-α contributes to increased microvascular endothelial permeability. Am. J. Physiol. (Lung Cell. Mol. Physiol.), 265:L438-L447.

    Google Scholar 

  11. LUM, H., and A. B. MALIK. 1994. Regulation of vascular endothelial barrier function. Am. J. Physiol. 267 (Lung Cell. Mol. Physiol. 11):L223-L241.

    Google Scholar 

  12. TAKEICHI, M. 1990. Cadherins: A molecular family important in selective cell-cell adhesion. Annu. Rev. Biochem., 59:237-252.

    Google Scholar 

  13. WYSOLMERSKI, R. B., and D. LAGUNOFF. 1991. Regulation of permeabilized endothelial cell retraction by myosin phosphorylation. Am. J. Physiol. 261(Cell Physiol. 30):C32-C40.

    Google Scholar 

  14. WATANABE, K., G. LAM, and E. A. JAFFE. 1992. The correlation between rises in intracellular calcium and PGI2 production in cultured vascular endothelial cells. Prost. Leuk. Ess. Fatty Acids 46:211-214.

    Google Scholar 

  15. FREAY, A. D., A. JOHNS, D. J. ADAMS, U. S. RYAN, and C. VAN BREEMAN. 1989. Bradykinin and inositol 1,4,5-triphosphate-stimulated calcium release from intracellular stores in cultured bovine endothelial cells. Pflug. Arch. 414:377-384.

    Google Scholar 

  16. CASNOCHA, S. A., S. G. ESKIN, E. R. HALL, and L. V. MCINTIRE. 1989. Permeability of human endothelial monolayers: Effect of vasoactive agonists and cAMP. J. Appl. Physiol. 67:1997-2005.

    Google Scholar 

  17. ALEXANDER, J. S., O. W. BLASCHUK, and F. R. HASLETON. 1993. An N-cadherin-like protein contributes to solute barrier maintenance in cultured endothelium. J. Cell. Physiol. 156:610-618.

    Google Scholar 

  18. KILLACKEY, J. J. F., M. G. JOHNSTON, and H. Z. MOVAT. 1986. Increased permeability of microcarrier-cultured endothelial monolayers in response to histamine and thrombin. A model for the in vitro study of increased vasopermeability. Am. J. Pathol. 122:50-61.

    Google Scholar 

  19. SCHAEFFER, R. C., F. GONG, M. S. BITRICK, and T. L. SMITH. 1993. Thrombin and bradykinin initiate discrete endothelial solute permeability mechanisms. Am. J. Physiol. (Heart Circ. Physiol.):H1798-H1809.

  20. GARCIA, J. G. N., A. SIFLINGER-BIRNBOIM, R. BIZIOS, P. J. DEL VECCHIO, J. W. FENTON II, and A. B. MALIK. 1986. Thrombin-induced increase in albumin permeability across the endothelium. J. Cell. Physiol. 128:96-104.

    Google Scholar 

  21. LUM, H., P. J. DEL VECCHIO, A. S. SCHNEIDER, M. S. GOLGORSKY, and A. B. MALIK. 1989. Calcium dependence of the thrombin-induced increase in endothelial albumin permeability. J. Appl. Physiol. 66:1471-1476.

    Google Scholar 

  22. KOHN, E. C., W. JACOBS, Y. S. KIM, R. ALESSANDRO, W. G. STETLER-STEVENSON, and L. A. LIOTTA. 1994. Calcium influx modulates expression of matrix metalloproteinase-2 (72 kDa Type IV Collagenase, Gelatinase A). J. Biol. Chem. 269:21505-21511.

    Google Scholar 

  23. SCHILLING, W. P., A. K. RITCHIE, L. T. NAVARRO, and S. G. ESKIN. 1988. Bradykinin-stimulated calcium influx in cultured bovine aortic endothelial cells. Am. J. Physiol. (Heart Circ. Physiol.): H219-H227.

  24. FOX, J. R., and H. WAYLAND. 1979. Interstitial diffusion of macromolecules in the rat mesentery. Microvasc. Res. 18:255-276.

    Google Scholar 

  25. YURCHENCO, P. D., and J. C. SCHITTNY. 1990. Molecular architecture of basement membranes. FASEB J. 4:1577-1590.

    Google Scholar 

  26. HE, C. S. M., A. P. WILHELM, B. L. PENTLANS, G. A. MARMER, A. Z. GRANT, A. Z. EISEN, G. I. GOLDBERG. 1989. Tissue cooperation in a proteolytic cascade activating human interstitial collagenase. Proc. Natl. Acad. Sci. U.S.A. 86:2632-2636.

    Google Scholar 

  27. WOESSNER, J. F. 1991. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 5:2145-2154.

    Google Scholar 

  28. HERRON, G. S., Z. WERB, K. DWYER, and M. J. BANDA. 1986. Secretion of metalloproteinases by capillary endothelial cells. J. Biol. Chem. 261:2810-2813.

    Google Scholar 

  29. ZUCKER, S., H. MIRZA, C. E. CONNER, A. F. LORENZ, M. H. DREWS, W. F. BAHOU, and J. JESTY. 1998. Vascular endothelial growth factor induces tissue factor and matrix metalloproteinase production in endothelial cells: conversion of prothrombin to thrombin results in progelatinase A activation and cell proliferation. International Journal of Cancer 75:780-786.

    Google Scholar 

  30. STRONGIN, A. Y., I. COLLIER, G. BANNIKOV, B. L. MARMER, G. A. GRANT, and G. I. GOLDBERG. 1995. Mechanism of cell surface activation of 72-kDa type IV collagenase. J. Biol. Chem. 270:5331-5338.

    Google Scholar 

  31. LAUG, W. E., M. E. WEINBLATT, and P. A. JONES. 1985. Endothelial cells degrade extracellular matrix proteins produced in vitro. Thromb. Haemostasis. 54:498-502.

    Google Scholar 

  32. STASEK, J. E., and J. G. N. GARCIA. 1992. The role of protein kinase C in α-thrombin-mediated endothelial cell activation. Sem. Thromb. Hem. 18:117-125.

    Google Scholar 

  33. GRYNKIEWICZ, G., M. POENIE, and R. Y. TSIEN. 1985. A new generation of Ca2+ indicators with greatly improved fluorescent properties. J. Biol. Chem. 260:3440-3450.

    Google Scholar 

  34. NGUYEN, L. T., H. LUM, C. TIRUPPATHI, and A. B. MALIK. 1997. Site-specific thrombin receptor antibodies inhibit Ca2+ signaling and increased endothelial permeability. Am. J. Physiol. (Cell Physiol. 42) 273:C1756-C1763.

    Google Scholar 

  35. STASEK, J. E., C. E. PATTERSON, and J. G. N. GARCIA. 1992. Protein kinase C phosphorylates caldesmon 77 and vimentin and enhances albumin permeability across cultured bovine pulmonary artery endothelial cell monolayers. J. Cell. Physiol. 153:62-75.

    Google Scholar 

  36. DUHAMEL-CLERIN, E., C. ORVAIN, F. LANZA, J. P. CAZENAVE, and C. KLEIN-SOYER. 1997. Thrombin receptor-mediated increase of two matrix metalloproteinases, MMP-1 and MMP-3, in human endothelial cells. Arteriosclerosis, Thrombosis and Vascular Biology 17:1931-1938.

    Google Scholar 

  37. ZUCKER, S., C. CONNER, B. I. DIMASSMO, H. ENDE, M. DREWS, M. SEIKI, and W. F. BAHOU. 1995. Thrombin induces the activation of a progelatinase A in vascular endothelial cells. J. Biol. Chem. 270:23730-23738.

    Google Scholar 

  38. JACKSON, C. J., and M. NGUYEN. 1997. Human microvascular endothelial cells differ from macrovascular endothelial cells in their expression of matrix metalloproteinases. Int. J. Biochem. 29:1167-1177.

    Google Scholar 

  39. NISHIZUKA, Y. 1992. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607-614.

    Google Scholar 

  40. THURSTON, G., and D. TURNER. 1994. Thrombin-induced increases of F-actin in human umbilical vein endothelial cells. Microvasc. Res. 47:1-20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehringer, W.D., Wang, OL., Haq, A. et al. Bradykinin and α-Thrombin Increase Human Umbilical Vein Endothelial Macromolecular Permeability by Different Mechanisms. Inflammation 24, 175–193 (2000). https://doi.org/10.1023/A:1007037711339

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007037711339

Keywords

Navigation