Skip to main content
Log in

Super-radiant surface emission from a quasi-cavity hot electron light emitter

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The Hot Electron Light Emitting and Lasing in Semiconductor Heterostructure (HELLISH-1) device is a novel surface emitter which utilises hot carrier transport parallel to the layers of a Ga1−xAlxAs p-n junction incorporating a single GaAs quantum well on the n-side of the junction plane. Non-equilibrium electrons are injected into the quantum well via tunnelling from the n-layer. In order to preserve the charge neutrality in the depletion region, the junction undergoes a self-induced internal biasing. As a result the built-in potential on the p-side is reduced and hence the injection of non- equilibrium holes into the quantum well in the active region is enhanced. The work presented here shows that a distributed Bragg reflector grown below the active region of the HELLISH device increases the emitted light intensity by two orders of magnitude and reduces the emission line-width by about a factor of 3 in comparison with the original HELLISH-1 structure. Therefore, the device can be operated as an ultrabright emitter with higher spectral purity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Kressel and K. Butler, Semiconductor Lasers and Heterojunction LEDs (Academic Press, New York, 1977).

    Google Scholar 

  2. J. Singh, Semiconductor Optoelectronics: Physics and Technology (McGraw-Hill, New York, 1995).

    Google Scholar 

  3. J. L. Jewell, J. P. Habison, A. Scherer, Y. H. Lee and L. T. Florez, IEEE J. Quantum Electron. 27 (1991) 1332.

    Google Scholar 

  4. K. Iga, F. Koyama and S. Kinoshita, IEEE J. Quantum Electron. 24 (1988) 1845.

    Google Scholar 

  5. A. Ibaraki, K. Kawahima, K. Furusawa, T. Ishikawa, T. Yamaguchi and T. Nina, Jap. J. Appl. Phys. 28 (1989) 667.

    Google Scholar 

  6. A. L. Coldren, E. Hegblom, E. Strzelecka, J. Ko, Y. Akulova and B. Thibeault, Proc. of SPIE 3003 13 (1997) 2.

    Google Scholar 

  7. C. Jung, R. Jager, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Muller and K. J. Ebeling, Electron. Lett. 33 (21) (1997) 1790.

    Google Scholar 

  8. S. Luryi, Negative differential resistance and instabilities in 2-D semiconductors, edited by N. Balkan, B. K. Ridley, A. J. Vickers (Plenum Press, New York, 1993) p. 53.

    Google Scholar 

  9. A. Straw, A. da Cunha, R. Gupta, N. Balkan, and B. K. Ridley, Superlattices and Microstructures 16 (1994) 173.

    Google Scholar 

  10. N. Balkan, A. da Cunha, A. O'brien, A. Teke, R. Gupta, A. Straw and M. C. Arikan, Hot Carriers in Semiconductors, edited by K. Hess, J. P. Leburton, U. Ravaioli (Plenum Press, New York, 1996) p. 603.

    Google Scholar 

  11. N. Balkan, A. Teke, R. Gupta, A. Straw, J. H. Wolter, W. van Vleuten, Appl. Phys. Lett. 67 (7) (1995) 935.

    Google Scholar 

  12. A. Teke, R. Gupta, N. Balkan, W. van der Vleuten and J. H. Wolter, Semicond. Sci. and Technol. 12 (1997) 314.

    Google Scholar 

  13. A. O'brien, N. Balkan and J. Roberts, Appl. Phys. Lett. 70 (3) (1997) 366.

    Google Scholar 

  14. T. J. Rogers, D. G. Deppe and B. G. Streetman, Appl. Phys. Lett. 57 (18) (1990) 1958.

    Google Scholar 

  15. E. M. Purcell, Phys. Rev. 69 (1946) 681.

    Google Scholar 

  16. T. E. Sale, Vertical Cavity Surface Emitting Lasers, (Research Studies Press Ltd. Taunton, Somerset, UK, 1995).

    Google Scholar 

  17. MC. Leod, Thin Film Optical Filters (Adam Hilger Ltd., Bristol, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'brien, A., Balkan, N., Boland-Thoms, A. et al. Super-radiant surface emission from a quasi-cavity hot electron light emitter. Optical and Quantum Electronics 31, 183–190 (1999). https://doi.org/10.1023/A:1006961123975

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006961123975

Keywords

Navigation