Skip to main content
Log in

Neural Induction of the Blood–Brain Barrier: Still an Enigma

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. The study of the blood–brain barrier and its various realms offers a myriad of opportunities for scientific exploration. This review focuses on two of these areas in particular: the induction of the blood–brain barrier and the molecular mechanisms underlying this developmental process.

2. The creation of the blood–brain barrier is considered a specific step in the differentiation of cerebral capillary endothelial cells, resulting in a number of biochemical and functional alterations. Although the specific endothelial properties which maintain the homeostasis in the central nervous system necessary for neuronal function have been well described, the inductive mechanisms which trigger blood–brain barrier establishment in capillary endothelial cells are unknown.

3. The timetable of blood–brain barrier formation is still a matter of debate, caused largely by the use of varying experimental systems and by the general difficulty of quantitatively measuring the degree of blood–brain barrier “tightness.” However, there is a general consensus that a gradual formation of the blood–brain barrier starts shortly after intraneural neovascularization and that the neural microenvironment (neurons and/or astrocytes) plays a key role in inducing blood–brain barrier function in capillary endothelial cells. This view stems from numerous in vitro experiments using mostly cocultures of capillary endothelial cells and astrocytes and assays for easily measurable blood–brain barrier markers. In vivo, there are great difficulties in proving the inductive influence of the neuronal environment. Also dealt with in this article are brain tumors, the least understood in vivo systems, and the induction or noninduction of barrier function in the newly established tumor vascularization.

4. Finally, this review tries to elucidate the question concerning the nature of the inductive signal eliciting blood–brain barrier formation in the cerebral microvasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Arthur, F. E., Shivers, R. R., and Bowman, P. D. (1987). Astrocyte-mediated induction of tight junctions in brain capillary endothelium: An efficient in vitro model. Dev. Brain Res. 36:155–159.

    Google Scholar 

  • Balslev, Y., Dziegielewska, K. M., and Møllgård, K. (1997). Intercellular barriers to and transcellular transfer of albumin in the fetal sheep brain. Anat. Embryol. 195:229–236.

    PubMed  Google Scholar 

  • Bär, T. (1980). The vascular system of the cerebral cortex. Adv. Anat. Embryol. Cell Biol. 59:1–62.

    Google Scholar 

  • Bär, T., and Wolff, J. R. (1972). The formation of capillary basement membranes during internal vascularization of the rat's cerebral cortex. Z. Zellforsch. 133:231–248.

    PubMed  Google Scholar 

  • Bauer, H. C., Tontsch, U., Amberger, A., and Bauer, H. (1990). Gamma-glutamyltranspeptidase (GGTP) and NaK-ATPase activities in different subpopulations of cloned cerebral endothelial cells: Responses to glial stimulations. BBRC 168:358–363.

    PubMed  Google Scholar 

  • Bauer, H. C., Bauer, H., Lametschwandtner, A., Amberger, A., Ruiz, P. L., and Steiner, M. (1993). Neovascularization and the appearance of morphological characteristics of the blood-brain barrier in the embryonic mouse central nervous system. Dev. Brain Res. 75:269–278.

    Google Scholar 

  • Bauer, H., Sonnleitner, U., Lametschwandtner, A., Steiner, M., Adam, H., and Bauer, H. C. (1995). Ontogenic expression of the erythroid-type glucose transporter (GLUT 1) in the telencephalon of the mouse: Correlation to the tightening of the blood-brain barrier. Dev. Brain Res. 86:317–325.

    Google Scholar 

  • Beck, W. D., Roberts, R. L., and Olson, J. J. (1986). Glial cells influence membrane-associated enzyme activity at the blood-brain barrier. Brain Res. 381:131–137.

    PubMed  Google Scholar 

  • Beuckmann, C., Hellwig, S., and Galla, H.-J. (1995). Induction of the blood/brain-barrier-associated enzyme alkaline phosphatase in endothelial cells from cerebral capillaries is mediated via cAMP. Eur. J. Biochem. 229:641–644.

    PubMed  Google Scholar 

  • Boado, R. J., Wang, L., and Pardridge, W. M. (1994). Enhanced expression of the blood-brain barrier GLUT1 glucose transporter gene by brain-derived factors. Mol. Brain Res. 22:259–267.

    PubMed  Google Scholar 

  • Bradbury, M. W. B. (1979). The Concept of a Blood-Brain Barrier, Wiley, Chichester.

    Google Scholar 

  • Braun, L. D., Cornford, E. M., and Oldendorf, W. H. (1980). Newborn rabbit blood-brain barrier is selectively permeable and differs substantially from the adult. J. Neurochem. 34:147–152.

    PubMed  Google Scholar 

  • Broadwell, R. D. (1988). Addressing the absence of a blood-brain barrier within transplanted brain tissue. Tech. Comm. Sci. 241:473.

    Google Scholar 

  • Broadwell, R. D., Charlton, H. M., Ganong, W. F., Salcman, M., and Sofroniew, M. (1989). Allografts of CNS tissue possess a blood-brain barrier. I. Grafts of medial preoptic area in hypogonadal mice. Exp. Neurol. 105:135–151.

    PubMed  Google Scholar 

  • Butt, A. M., Jones, H. C., and Abbott, N. J. (1990). Electrical resistance across the blood-brain barrier in anaesthetized rats: A developmental study. J. Physiol. 429:47–62.

    PubMed  Google Scholar 

  • Caley, D. W., and Maxwell, D. S. (1970). Development of the blood vessels and extracellular spaces during postnatal maturation of rat cerebral cortex. J. Comp. Neurol. 42:31–48.

    Google Scholar 

  • Cancilla, P. A., and DeBault, L. E. (1983). Neutral amino-acid transport properties of cerebral endothelial cells in vitro. J. Neropathol. Exp. Neruol. 42:191–199.

    Google Scholar 

  • DeBault, L. E. (1981). g-Glutamyl transpeptidase induction mediated by glial foot processes on endothelium contact in co-culture. Brain Res. 220:432–435.

    PubMed  Google Scholar 

  • DeBault, L. E., and Cancilla, P. A. (1979). g-Glutamyl transpeptidase in isolated brain endothelial cells: Induction by cells in vitro. Science 207:653–655.

    Google Scholar 

  • Dehouck, M.-P., Méresse, S., Delorme, P., Fruchart, J.-C., and Cecchelli, R. (1990). An easier, reproducible, and mass-production method to study the blood-brain barrier in vitro. J. Neurochem. 54:1798–1801.

    PubMed  Google Scholar 

  • Dehouck, B., Dehouck, M.-P., Fruchart, J.-C., and Cecchelli, R. (1994). Upregulation of the low density lipoprotein receptor at the blood-brain barrier: intercommunications between brain capillary endothelial cells and astrocytes. J. Cell Biol. 126:465–473.

    PubMed  Google Scholar 

  • Delorme, P., Gayet, J., and Grignon, G. (1970). Ultrastructural study on transcapillary exchange in the developing telencephalon of the chicken. Brain Res. 22:269–283.

    PubMed  Google Scholar 

  • Dermietzel, R., and Krause, D. (1991). Molecular anatomy of the blood-brain barrier as defined by immunocytochemistry. Int. Rev. Cytol. 127:57–109.

    PubMed  Google Scholar 

  • Dermietzel, R., and Leibstein, A. G. (1978). The microvascular pattern and perivascular linings of the area postrema. A combined freeze-fracture and ultrathin section study. Cell Tissue Res. 186:97–110.

    PubMed  Google Scholar 

  • Dziegielewska, K. M., Evans, C. A. N., Malinowska, D. H., Møllgård, K., Reynolds, J. M., Reynolds, M. L., and Saunders, N. R. (1979). Studies of the development of brain barrier systems to lipid insoluble molecules in fetal sheep. J. Physiol. 292:207–231.

    PubMed  Google Scholar 

  • Dziegielewska, K. M., Hinds, L. A., Møllgård, K., Reynolds, M. L., and Saunders, N. R. (1988). Bloodbrain, blood-cerebrospinal fluid and cerebrospinal fluid-brain barriers in a marsupial (Macropus eugenii) during development. J. Physiol. 403:367–388.

    PubMed  Google Scholar 

  • Engelhardt., B., and Risau, W. (1995). Development of the blood-brain barrier. In Greenwood, J., Begley, D. J., and Segal, M. B. (eds.), New Concepts of a Blood-Brain Barrier, Plenum Press, New York and London, pp. 11–33.

    Google Scholar 

  • Fabian, R. H., and Hulsebosch, C. E. (1989). Time course of penetration of xenogeneic IgG into the central nervous system of the neonatal rat: An immunohistochemical and radionuclide tracer study. J. Neuroim. 24:183–189.

    Google Scholar 

  • Grazer, F. M., and Clemente, C. D. (1957). Developing blood-brain barrier to trypan blue. Proc. Soc. Exp. Biol. Med. 94:758–760.

    PubMed  Google Scholar 

  • Hayashi, Y., Nomura, M., Yamagishi, S., Harada, S., Yamashita, J., and Yamamoto, H. (1997). Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to cocultured astrocytes. Glia 19:13–26.

    PubMed  Google Scholar 

  • Holash, J. A., Noden, D. M., and Stewart, P. A. (1993). Re-evaluating the role of astrocytes in bloodbrain barrier induction. Dev. Dynam. 197:14–25.

    Google Scholar 

  • Janzer, R. C., and Raff, M. C. (1987). Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325:253–257.

    PubMed  Google Scholar 

  • Joó, F. (1992). The cerebral microvessels in culture, an update. J. Neurochem. 58:1–16.

    PubMed  Google Scholar 

  • Joó, F. (1996). Endothelial cells of the brain and other organ systems: Some similarities and differences. Prog. Neurobiol. 48:255–273.

    PubMed  Google Scholar 

  • Joó, F., and Karnushina, I. (1973). A procedure for the isolation of capillaries from rat brain. Cytobios 8:41–48.

    PubMed  Google Scholar 

  • Kása, P., Pákáski, M., Joó, F., Sershen, H., and Lajtha, A. (1990). Human in vitro blood-brain barrier model system for studying the effects of drugs. Eur. Soc. Neurochem. 8:27.5.

    Google Scholar 

  • Kása, P., Pákáski, M., Joó, F., and Lajtha, A. (1991). Endothelial cells from human fetal brain microvessels may be cholinoceptive but do not synthesize acetylcholine. J. Neurochem. 56:2143–2146.

    PubMed  Google Scholar 

  • Kniesel, U., Risau, W., and Wolburg, H. (1996). Development of blood-brain barrier tight junctions in the rat cortex. Dev. Brain Res. 96:229–240.

    Google Scholar 

  • Kratochwil, K. (1983). Embryonic induction. In Yamada, K. M. (ed.), Cell Interaction and Development: Molecular Mechanisms, John Wiley & Sons, Wiley, pp. 99–122.

    Google Scholar 

  • Krum, J.M., and Rosenstein J. M. (1989). The fine structure of vascular-astroglial relations in transplanted fetal neocortex. Exp. Neurol. 103:203–212.

    PubMed  Google Scholar 

  • Krum, J. M., and Rosenstein, J. M. (1993). Effect of astroglial degeneration on the blood-brain barrier to protein in neonatal rats. Dev. Brain Res. 74:41–50.

    Google Scholar 

  • Landis, D. M. D., and Weinstein, L. A. (1983). Membrane structure in cultured astrocytes. Brain Res. 276:31–41.

    PubMed  Google Scholar 

  • Laterra, J., Guerin, C., and Goldstein, G. W. (1990). Astrocytes induce neural microvascular endothelial cells to form capillary-like structures in vitro. J. Cell. Physiol. 144:204–215.

    PubMed  Google Scholar 

  • Lechardeur, D., Schwartz, B., Paulin, D., and Scherman, D. (1995). Induction of blood-brain barrier differentiation in a rat brain-derived endothelial cell line. Exp. Cell Res. 220:161–170.

    PubMed  Google Scholar 

  • Lobrinus, J. A., Juillerat-Jeanneret, L., Darekar, P., Schlosshauer, B., and Janzer, R. C. (1992). Induction of the blood-brain barrier specific HT7 and neurothelin epitopes in endothelial cells of the chick chorioallantoic vessels by a soluble factor derived from astrocytes. Dev. Brain Res. 70:207–211.

    Google Scholar 

  • Maxwell, K., Berliner, J. A., and Cancilla, P. A. (1987). Induction of g-glutamyl transpeptidase in cultured cerebral endothelial cells by a product released by astrocytes. Brain Res. 410:309–314.

    PubMed  Google Scholar 

  • Maxwell, K., Berliner, J. A., and Cancilla, P. A. (1989). Stimulation of glucose analogue uptake by cerebral microvessel endothelial cells by a product released by astrocytes. J. Neuropath. Exp. Neurol. 48:69–80.

    PubMed  Google Scholar 

  • Méresse, S., Dehouck, M.-P., Delorme, P., Bensaid, M., Tauber, J. P., Delbart, C., Fruchar, J.-C., and Cecchelli, R. (1989). Bovine brain endothelial cells express tight-junctions and monoamine oxidase activity in long term culture. J. Neurochem. 53:1363–1371.

    PubMed  Google Scholar 

  • Meyer, J., Mischeck, U., Veyhl, M., Henzel, K., and Galla, H. J. (1990). Blood-brain barrier characteristic enzymatic properties in cultured brain capillary endothelial cells. Brain Res. 514:305–309.

    PubMed  Google Scholar 

  • Meyer, J., Rauh, J., and Galla, H.-J. (1991). The susceptibility of cerebral endothelial cells to astroglial induction of blood-brain barrier enzymes depends on their proliferative state. J. Neurochem. 57:1971–1977.

    PubMed  Google Scholar 

  • Neuhaus, J., Risau, W., and Wolburg, H. (1991). Induction of blood-brain barrier characteristics in bovine brain endothelial cells by rat astroglial cells in transfilter coculture. Ann. N.Y. Acad. Sci. 633:578–580.

    PubMed  Google Scholar 

  • Olsson, Y., Klatzo, I., Sourander, P., and Steinwall, O. (1968). Blood-brain barrier to albumin in embryonic, newborn and adult rats. Acta. Neuropathol. (Berl.). 10:117–122.

    Google Scholar 

  • Pardridge, W. M. (1988). Recent advances in blood-brain barrier transport. Annu. Rev. Pharmacol. Toxicol. 28:25–39.

    PubMed  Google Scholar 

  • Raub, T. J., Kuentzel, S. L., and Sawada, G. A. (1992). Permeability of bovine brain microvessel endothelial cells in vitro: Barrier tightening by a factor released from astroglioma cells. Exp. Cell Res. 199:330–340.

    PubMed  Google Scholar 

  • Reynolds, M. L., Cavanagh, M. E., Dziegielewska, K. M., Hinds, L. A., Saunders, N. R., and Tyndale-Biscoe, C. H. (1985). Postnatal development of the telencephalon of the Tammar wallaby (Macropus eugenii). An accessible model of neocortical differentiation. Anat. Embryol. 173:81–94.

    PubMed  Google Scholar 

  • Risau, W., and Wolburg, H. (1990). Development of the blood-brain barrier. TINS 13:174–178.

    PubMed  Google Scholar 

  • Risau, W., Hallmann, R., and Albrecht, U. (1986). Differentiation-dependent expression of proteins in brain endothelium during development of the blood-brain barrier. Dev. Biol. 117:537–545.

    PubMed  Google Scholar 

  • Roncali, L., Nico, B., Ribatti, D., Bertossi, M., and Mancini, L. (1986). Microscopical and ultrastructural Blood-Brain Barrier Induction 27 investigations on the development of the blood-brain barrier in the chick embryo optic tectum. Acta Neropathol. 70:193–201.

    Google Scholar 

  • Rosenstein, J. M. (1987a). Adrenal medulla grafts produce blood-brain barrier dysfunction. Brain Res. 414:192–196.

    PubMed  Google Scholar 

  • Rosenstein, J. M. (1987b). Neocortical transplants in the mammalian brain lack a blood-brain barrier to macromolecules. Science 235:772–774.

    PubMed  Google Scholar 

  • Rosenstein, J. M. (1988). Addressing the absence of a blood-brain barrier within transplanted brain tissue. A response: Technical comment. Science 241:473–474.

    PubMed  Google Scholar 

  • Roux, F., Durieu-Trautmann, O., Chaverot, N., Claire, M., Mailly, P., Bourre, J.-M., Strosberg, A. D., and Couraud, P.-O. (1994). Regulation of gamma-glutamyl transpeptidase and alkaline phosphatase activities in immortalized rat brain microvessel endothelial cells. J. Cell. Physiol. 159:101–113.

    PubMed  Google Scholar 

  • Rubin, L. L., Hall, D. E., Porter, S., Barbu, K., Cannon, C., Horner, H. C., Janatpour, M., Liaw, C. W., Manning, K., Morales, J., Tanner, L. I., Tomaselli, K. J., and Bard, F. (1991). A cell culture model of the blood-brain barrier. J. Cell Biol. 115:1725–1735.

    Google Scholar 

  • Sage, M. R. (1982). Blood-brain barrier: Phenomenon of increasing importance to the imaging clinician. Am. J. Roentgenol. 138:887–898.

    Google Scholar 

  • Saunders, N. R. (1977). Ontogeny of the blood-brain barrier. Exp. Eye Res. Suppl. 25:523–550.

    Google Scholar 

  • Saunders, N. R. (1992). Ontogenetic development of brain barrier mechanisms. In Bradbury, M. W. B. (ed.), Handbook of Experimental Pharmacology, Vol.103. Physiology and Pharmacology of the Blood-Brain Barrier, Springer-Verlag, Berlin, pp. 328–369.

    Google Scholar 

  • Saunders, N. R., and Dziegielewska, K. M. (1997). Barriers in the developing brain. News Physiol. Sci. 12:21–31.

    Google Scholar 

  • Saunders, N. R., Knott, G. W., and Dziegielewska, K. M. (1999). Barriers in the immature brain. Cell. Mol. Neurobiol. 20:29–40.

    Google Scholar 

  • Saxén, L. (1977). Directive versus permissive induction: A working hypothesis. In Lash, J. W., and Burger, M. M. (eds.), Cell and Tissue Interactions, Raven Press, New York, p. 1.

    Google Scholar 

  • Schinkel, A. H., Smit, J. J. M., van Tellingen, O., Beijnen, J. H., Wagenaar, E., van Deemter, L., Mol, C. A. A. M., van der Valk, M. A., Robanus-Maandag, E. C., te Riele, H. P. J., Berns, A. J. M., and Borst, P. (1994). Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502.

    Article  PubMed  Google Scholar 

  • Seulberger, H., Lottspeich, F., and Risau, W. (1990). The inducible blood-brain barrier specific molecule HT7 is a novel immunoglobulin-like cell surface glycoprotein. EMBO J. 7:2151–2158.

    Google Scholar 

  • Shivers, R. R., Edmonds, C. L., and Del Maestro, R. F. (1984). Microvascular permeability in induced astrocytomas and peritumor neuropil of rat brain. Acta Neuropathol. 64:192–198.

    PubMed  Google Scholar 

  • Shivers, R. R., Arthur, F. E., and Bowman, P. D. (1988). Induction of gap junctions and brain endotheliumlike tight junctions in cultured bovine endothelial cells: local control of cell specialization. J. Submicrosc. Cytol. Pathol. 20:1–14.

    PubMed  Google Scholar 

  • Small, R. K., Watkins, B. A., Munro, P. M., and Liu, D. (1993). Functional properties of retinal Müller cells following transplantation to the anterior eye chamber. Glia 7:158–169.

    PubMed  Google Scholar 

  • Stern, L., and Peyrot, R. (1927). Le fonctionnement de la barrie`re he´mato-encephalique aux divers stades de de´veloppment chez diverses animales. C.R. Soc. Biol. 96:1124–1126.

    Google Scholar 

  • Stern, L., Rappaport, J.-L., and Lokschina, E.-S. (1929). Le fonctionnement de la barrie`re he´matoencephalique chez les nouveaunes. C.R. Soc. Biol. 100:231–233.

    Google Scholar 

  • Stewart, P. A., and Hayakawa, E. M. (1987). Interendothelial junctional changes underlie the developmental ''tightening'' of the blood-brain barrier. Dev. Brain Res. 32:271–281.

    Google Scholar 

  • Stewart, P. A., and Wiley, M. J. (1981). Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: A study using quail-chick transplantation chimeras. Dev. Biol. 84:183–192.

    PubMed  Google Scholar 

  • Stewart, P. A., Clements, L. G., and Wiley, M. J. (1984). Revascularization of skin transplanted into the brain: Source of the graft endothelium. Microvasc. Res. 28:113–124.

    PubMed  Google Scholar 

  • Svendgaard, N.-A., Björklund, A., Hardebo, J.-E., and Stenevi, U. (1975). Axonal degeneration associated with a defective blood-brain barrier in cerebral implants. Nature 255:334–336.

    PubMed  Google Scholar 

  • Tao-Cheng, J.-H., Nagy, Z., and Brightman, M. W. (1987). Tight junctions of brain endothelium in vitro are enhanced by astroglia. J. Neurosci. 7:3293–3299.

    PubMed  Google Scholar 

  • Tontsch, U., and Bauer, H. C. (1989). Isolation, characterization and long-term cultivation of porcine and murine cerebral capillary endothelial cells. Microvasc. Res. 37:148–161.

    PubMed  Google Scholar 

  • Tontsch, U., and Bauer, H. C. (1991). Glial cells and neurons induce blood-brain barrier related enzymes in cultured cerebral endothelial cells. Brain Res. 539:247–253.

    PubMed  Google Scholar 

  • Tuor, U. L., Simone, C., and Bascaramurty, S. (1992). Local blood-brain barrier in the newborn rabbit: Postnatal changes in the a-aminioisoburyric acid transfer within medulla cortex, and selected brain areas. J. Neurochem. 59:999–1007.

    PubMed  Google Scholar 

  • Vorbrodt, A. W., and Dobrogowska, D. H. (1994). Immunocytochemical evaluation of blood-brain barrier to endogenous albumin in adult, newborn and aged mice. Folia Histochem. Cytobiol. 32:63–70.

    PubMed  Google Scholar 

  • Vorbrodt, A. W., Lossinsky, A. S., and Wisniewski, H. M. (1986). Localization of alkaline phosphatase activity in endothelia of developing and mature mouse blood-brain barrier. Dev. Neurosci. 8:1–13.

    PubMed  Google Scholar 

  • Wakai, S., and Hirokawa, N. (1979). Development of the blood-brain barrier to horseradish peroxidase in the chick embryo. Cell Tissue Res. 195:195–203.

    Google Scholar 

  • Wakai, S., and Hirokawa, N. (1981). Development of blood-cerebrospinal fluid barrier to horseradish peroxidase in the avian choroidal epithelium. Cell Tissue Res. 214:271–278.

    PubMed  Google Scholar 

  • Wakai, S., Meiselman, S. E., and Brightman, M. W. (1986). Focal circumvention of blood-brain barrier with grafts of muscle, skin and autonomic ganglia. Brain Res. 386:209–222.

    PubMed  Google Scholar 

  • Wolburg, H. (1995). Glia-neuronal and glia-vascular interrelations in blood-brain barrier formation and axon regeneration in vertebrates. In Vernadakis, A., and Roots, B. (eds.), Neuron-Glia Interrelations During Phylogeny: II. Plasticity and Regeneration, Humana Press, Totowa, NJ, pp. 479–510.

    Google Scholar 

  • Wolburg, H., Neuhaus, J., Pettmann, B., Labourdette, G., and Sensenbrenner, M. (1986). Decrease in the density of orthogonal arrays of particles in membranes of cultured rat astroglial cells by the brain fibroblast growth factor. Neurosci. Lett. 72:25–30.

    PubMed  Google Scholar 

  • Yoshida, Y., Yamada, M., Wakabayashi, K., and Ikuta, F. (1988). Endothelial fenestrae in the rat fetal cerebrum. Dev. Brain Res. 44:211–219.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, HC., Bauer, H. Neural Induction of the Blood–Brain Barrier: Still an Enigma. Cell Mol Neurobiol 20, 13–28 (2000). https://doi.org/10.1023/A:1006939825857

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006939825857

Navigation