Skip to main content
Log in

Role of the ubiquitin-proteasome pathway in sepsis-induced muscle catabolism

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Several lines of evidence suggest that the ubiquitin-proteasome pathway is involved in sepsis-induced muscle catabolism. The gene expression of ubiquitin and several of the proteasome subunits was increased in muscle from both septic rats and patients. In other studies, the activity of isolated 20S proteasomes was stimulated in septic muscles. Sepsis-induced increase in muscle total and myofibrillar protein breakdown was inhibited with specific proteasome blockers. Although the ubiquitin-proteasome pathway is upregulated in septic muscle, it is still unclear how the myofibrillar proteins actin and myosin are ubiquitinated and become substrates for the 26S proteasome. Recent studies suggest that a calcium-dependent, calpain-mediated process releases myofilaments from the Z-disks during sepsis. It is possible that this process exposes destabilizing N-terminal residues on actin and myosin, making them suitable substrates for the N-end rule pathway involving the 14 kD ubiquitin-conjugating enzyme E214k and the ubiquitin-protein ligase E3α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sax HC, Talamini MA, Hasselgren PO, Rosenblum L, Ogle CK & Fischer JE (1988) J. Surg. Res. 44: 109–116

    Google Scholar 

  2. Newsholme EA & Parry Billings M (1992) J. Parent. Nutr. 14: 63S–67S

    Google Scholar 

  3. Windmueller HG & Spaeth AE (1980) J. Biol. Chem. 255: 107–112

    Google Scholar 

  4. Reid WD & MacGowan NA (1998) Mol. Cell. Biochem. 179: 63–80

    Google Scholar 

  5. Hasselgren PO (1993) Protein Metabolism in Sepsis. RG Landes Co, Austin, Texas

    Google Scholar 

  6. Attaix D & Taillandier D (1998) Adv. Mol. Cell. Biol. 27: 235–266

    Google Scholar 

  7. Tiao G, Fagan JM, Samuels N, James JH, Hudson K, Lieberman M, Fischer JE & Hasselgren PO (1994) J. Clin. Invest. 94: 2255–2264

    Google Scholar 

  8. Hasselgren PO, James JH, Benson DW, Hall-Angerå s M, Angerå s U, Hiyama DT, Li S & Fischer JE (1989) Metabolism 38: 634–640

    Google Scholar 

  9. Voisin L, Breuille D, Combarret L, Pouyet C, Taillandier D, Aurousseau E, Obled C & Attaix D (1996) J. Clin. Invest. 97: 1610–1617

    Google Scholar 

  10. Fang CH, Tiao G, James H, Ogle C, Fischer JE & Hasselgren PO (1995) J. Am. Coll. Surg. 180: 161–170

    Google Scholar 

  11. Li JB & Goldberg AL (1976) Am. J. Physiol. 231: 441–448

    Google Scholar 

  12. Kettelhut IC, Wing SS & Goldberg AL (1988) Diabetes Metab. Rev. 4: 751–772

    Google Scholar 

  13. Tiao G, Lieberman M, Fischer JE & Hasselgren PO (1997) Am. J. Physiol. 272: R849–R856

    Google Scholar 

  14. Hershko A & Ciechanover A (1992) Annu. Rev. Biochem. 61: 761–807

    Google Scholar 

  15. Wing SS & Banville D (1994) Am. J. Physiol. 267: E39–E48

    Google Scholar 

  16. Hobler SC, Wang JJ, Williams AB, Melandri F, Sun X, Fischer JE & Hasselgren PO (1998) Am. J. Physiol. in press

  17. Tiao G, Fagan J, Roegner V, Lieberman M, Wang JJ, Fischer JE & Hasselgren PO (1996) J. Clin. Invest. 97: 339–348

    Google Scholar 

  18. Lee DH & Goldberg AL (1998) Trends Cell. Biol. 8: 397–403

    Google Scholar 

  19. Hobler SC, Tiao G, Fischer JE, Monaco J & Hasselgren PO (1998) Am. J. Physiol. 274: R30–37

    Google Scholar 

  20. Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ & Schreiber SL (1995) Science 268: 726–731

    Google Scholar 

  21. Tawa NE, Odyssey R & Goldberg AL (1997) J. Clin. Invest. 100: 197–203

    Google Scholar 

  22. Fang CH, Wang JJ, Hobler S, Li BG, Fischer JE & Hasselgren PO (1998) Clin Sci 95: 225–233

    Google Scholar 

  23. Dick L, Cruikshank AA, Grenier L, Melandri FD, Nunes SL & Stein R (1996) J. Biol. Chem. 271: 7273–7276

    Google Scholar 

  24. Tiao G, Hobler S, Wang JJ, Meyer TA, Luchette FA, Fischer JE & Hasselgren PO (1997) J. Clin. Invest. 99: 163–168

    Google Scholar 

  25. Mansoor O, Beaufrere B, Boirie Y, Ralliere C, Taillandier D, Aurousseau E, Schoeffler P, Arnal M & Attaix D (1996) Proc. Natl. Acad. Sci. USA 93: 2714–2718

    Google Scholar 

  26. Llovera M, Garcia-Martinez C, Argell N, Lopez-Scriano FJ, Authier FJ, Gherardi PK, Argiles JM (1998) Int. J. Mol. Med. 2: 69–73

    Google Scholar 

  27. Auclair D, Garrel DR, Zerouala AC & Ferland LH (1997) Am. J. Physiol. 272: C1007–C1016

    Google Scholar 

  28. Wing SS & Goldberg AL (1993) Am. J. Physiol. 264: E668–E676

    Google Scholar 

  29. Ralliere C, Tauveron I, Taillandier D, Guy L, Boiteux JP, Giraud B, Attaix D & Thieblot P (1997) J. Clin. Endocrinol. Metab. 82: 3161–3164

    Google Scholar 

  30. Roberts RG, Redfern CPF & Goodskip THJ (1996) Fourth International Symposium on Amino Acid/Protein Metabolism in Health and Disease. Padova, Italy, April 12- 13 (abstr)

  31. Mitch WE, Medina R, Grieber S, May RC, England BK, Price SR, Bailey JL & Goldberg AL (1994) J. Clin. Invest. 93: 2127–2133

    Google Scholar 

  32. Bailey JL, Wang W, Engsland BK, Price SR, Ding X & Mitch WE (1996) J. Clin. Invest. 97: 1447–1453

    Google Scholar 

  33. Madura K, Dohmen RJ & Varshavsky A (1993) J. Biol. Chem. 268: 12046–12054

    Google Scholar 

  34. Varshavsky A (1997) Genes to Cells 2: 13–28

    Google Scholar 

  35. Kwon YT, Reiss Y, Fried VA, Hershko A, Yoon JK, Gonda DK, Sangan P, Copeland NG, Jenkins NA & Varshavsky A (1998) Proc. Natl. Acad. Sci. USA 95: 7898–7903

    Google Scholar 

  36. Solomon V, Lecker SH & Goldberg AL (1998) J. Biol. Chem. 273: 25216–25222

    Google Scholar 

  37. Solomon V, Baracos V, Sarraf P & Goldberg AL (1998) Proc. Natl. Acad. Sci. USA 95: 12602–12607

    Google Scholar 

  38. Williams AB, Fischer JE & Hasselgren PO (1998) Surg. Forum 49: 66–69

    Google Scholar 

  39. Dahlmann B, Rutschmann M & Reinauer H (1986) Biochem. J. 234: 659–664.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasselgren, PO. Role of the ubiquitin-proteasome pathway in sepsis-induced muscle catabolism. Mol Biol Rep 26, 71–76 (1999). https://doi.org/10.1023/A:1006916206260

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006916206260

Navigation