Skip to main content
Log in

Anatomical and biochemical characterization of the calcium effect on Eucalyptus urophylla callus morphogenesis in vitro

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Calcium chloride concentrations from 0.0 to 12.12 mM were added to the culture medium and calcium content in calluses were determined directly by X-ray fluorescence spectrometry, a non-destructive method, allowing the processing of the same tissue for histological analysis. A multivariate statistical analysis (PCA – Principal Components Analysis) grouped the treatments into 5 blocks and indicated the most responsive group. Lack of calcium supply caused a complete absence of a morphogenic process and tissue collapse. An increase in calcium concentration gave higher total protein and sugar contents, an increase in peroxidase specific activity and changes in the histological characteristics. It was possible to verify that calcium stimulated globular somatic embryo formation at concentration of 6.62 mM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arruda, SCC (2000) Avaliação do efeito do cálcio na indução de embriogênese somática de Eucalyptus urophylla. Dissertação de Mestrado, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, 73 p

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  • Bowler C & Fluhr R (2000) The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci. 5: 241–246

    Article  PubMed  CAS  Google Scholar 

  • Connors WL & Ruzicka J (1999) Flow injection microscopy for the study of intracellular calcium mobilization by muscarinic agonists. Anal. Biochem. 268: 377–382

    Article  PubMed  CAS  Google Scholar 

  • Cutter EG (1986) Anatomia Vegetal. Parte I: Células e Tecidos. Editora Roca, São Paulo

  • DeVries SC, Booij H, Janssens R, Ronald V, Saris L, LoSchiavo F, Terzi M & Van Kammen A (1988) Carrot somatic embryogenesis depends on the phytohormone-controlled presence of correctly glycosylated extracelular proteins. Genes Dev. 2: 462–476

    CAS  Google Scholar 

  • Eklund L & Eliasson L (1990) Effects of calcium ion concentration on cell wall synthesis. J. Exp. Bot. 41: 863–867

    CAS  Google Scholar 

  • El Maataoui M, Espagnac H & Michaux-Ferrière N (1990) Histology of callogenesis and somatic embryogenesis induced in stem fragments of cork oak (Quercus suber) cultured in vitro. Ann. Bot. 66: 183–190

    Google Scholar 

  • Ettiene H, Lartaud M, Carron MP & Michaux-Ferrière N (1997) Use of calcium to optimize long-term proliferation of embryogenic calluses and plant regeneration in Hevea brasiliensis (Mull. Arg.). J. Exp. Bot. 48: 129–137

    Google Scholar 

  • Fosket DE (1994) Plant growth and development. A molecular approach. Academic Press, USA

    Google Scholar 

  • Goodwin BC & Brière C (1991) Generic dynamics of morphogenesis. In: Mosekilde E & Mosekilde L (eds) Complexity, Chaos and Biological Evolution. (pp 201–301). Plenum Press, New York

    Google Scholar 

  • Grover M, Sharma AK, Dhingra A, Maheshwari SC & Tyagi AK (1998) Regulation of plastid gene expression in rice involves calcium and protein phosphatases/kinases for signal transduction. Plant Sci. 137: 185–190

    Article  CAS  Google Scholar 

  • Haccius B (1978) Questions of unicellular origin of non-zygotic embryos in callus cultures. Phytomorphology (New Delhi) 28: 74–81

    Google Scholar 

  • Halperin W & Wetherel DF (1965) Ontogeny of adventive embryos of wild carrot. Science 147: 756–758

    PubMed  Google Scholar 

  • Hammerschimidt R, Nuckles EM & Kuc J (1982) Association of enhanced peroxidase activity with induced systematic resistance of cucumber to Colletotrichum lagenarium. Physiol. Plant Pathol. 20: 73–82

    Article  Google Scholar 

  • Harmon AC, Gribskov M & Harper JF (2000) CDPKs - a kinase for every Ca2+ signal? Trends Plant Sci. 5: 154–159

    Article  PubMed  CAS  Google Scholar 

  • Heppler PK & Wayne RO (1985) Calcium and plant development. Ann. Rev. Plant Physiol. 36: 397-349

    Google Scholar 

  • Hu C, Smith R & Van Huystee R (1987) Biosynthesis and localization of peanut peroxidases. A comparison of the cationic and anionic isozymes. J. Biol. Chem. 267: 6635–6640

    Google Scholar 

  • Hvoslef-Eide AK & Corke FMK (1997) Embryogenesis specific protein changes in birch suspension cultures. Plant Cell Tiss. Org. Cult. 51: 35–41

    Article  CAS  Google Scholar 

  • Hwang I, Ratterman DM & Sze H (1997) Distinction between endoplasmic reticulum-type and plasma membrane-type Ca2+ pumps. Plant Physiol. 113: 535–548.

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi A, Satoh S, Nakamura N & Fujii T (1995) Differences in pectic polysaccharides between carrot embryogenic and nonembryogenic calluses. Plant Cell Rep. 14: 279–284

    Article  CAS  Google Scholar 

  • Marschner H (1986) Mineral Nutrition of Higher Plants. Academic Press, Inc., London, UK

    Google Scholar 

  • Michaux-Ferrière N, Grout H & Carron MP (1992) Origin and ontogenesis of somatic embryos in Hevea brasiliensis (Euphorbiaceae). Am. J. Bot. 79: 154–164

    Google Scholar 

  • Michaux-Ferrière N, Dublin P & Schwendiman J (1987) Etude histologique de l'embryogenèse somatique à partir d'explants foliai de Coffea arabica L. Café Cacao Thé. 31: 103–114

    Google Scholar 

  • Scandalios JG (1974) Isozymes in development and differentiation. Ann. Rev. Plant Physiol. 25: 225–258

    Article  CAS  Google Scholar 

  • Siegel BZ (1993) Plant peroxidases - an organismic perspective. Pl. Growth Reg. 12: 303–312

    Article  CAS  Google Scholar 

  • Simola LK (1985) Propagation of plantlets from leaf callus of Betula pendula purpurea. Scientia Hortic. 26: 77–85

    Article  Google Scholar 

  • Sticher L, Penel C & Greppin H (1988) Calcium requirement for the secretion of peroxidases by plant cell suspension. J. Cell Sci. 48: 345–353

    Google Scholar 

  • Trewavas AJ & Malhó R (1997) Signal perception and transduction: the origin of the phenotype. Plant Cell 9: 1181–1195

    Article  PubMed  CAS  Google Scholar 

  • Trewavas AJ & Malhó R (1998) Calcium signalling in plant cells: the big network! Curr. Opin. Plant Biol. 1: 428–433

    Article  PubMed  CAS  Google Scholar 

  • Van Huystee RB, Xu Y & O'Donnell l (1992) Variation in sout band absorption of peroxidase due to calcium. Plant Physiol. Biochem. 30: 293–297

    CAS  Google Scholar 

  • Weisenseel MH & Kicherer RM (1981) Ionic currents as control mechanism in cytomorphogenesis. In: Kiermayer O (ed) Cytomorphogenesis in Plants. (pp 379–399)

  • Williams EG & Maheswaran G (1986) Somatic embryogenesis: Factors influencing coordinated of cells as in embryogenic group. Ann. Bot. 57: 443–462

    Google Scholar 

  • Yemm EW & Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57: 508–515

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.N. Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arruda, S., Souza, G., Almeida, M. et al. Anatomical and biochemical characterization of the calcium effect on Eucalyptus urophylla callus morphogenesis in vitro . Plant Cell, Tissue and Organ Culture 63, 142–154 (2000). https://doi.org/10.1023/A:1006482702094

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006482702094

Navigation