Skip to main content
Log in

Sucrose metabolism and indoleglucosinolate production of immobilized horseradish cells

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

The problem of transient primary or secondary metabolism remaining a persisting problem in plant cell cultures is discussed. Since secondary metabolites occurred mainly in differentiated tissues, an effort was made to mimic the cell-to-cell contact of multicellular organisms. Sucrose metabolism and indoleglucosinolate production from immobilized cells of Armoracia rusticanawere investigated. Immobilization acted by reducing the assimilation of the hexoses released into the culture medium. Although sucrose hydrolysis occurred prior to uptake, the decrease of acid invertase activity in immobilized cells was accompanied by an increased yield (2–3-fold) of the intracellular sucrose. Glucosinolates accumulated as indolic forms only during the stationary stage of cell growth. Their amount in immobilized cells may be increased 2-fold compared to the control cultures. On the other hand intracellular sucrose concentration declined whilst the cleavage activity of sucrose synthase increased simultaneously with production of indole-3-methyl- and 4-hydroxy-indole-3-methyl-glucosinolates. Thus, the role of cell immobilization in the biosynthesis of indoleglucosinolates is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett R, Ludwig-Muller J, Kiddle G, Hilgenberg W & Wallsgrove R (1995) Developmental regulation of aldoxime formation in seedlings and mature plants of Chinese cabbage (Brassica campestris ssp. Pekinensis) and oilseed rape (Brassica napus): glucosinolate and IAA biosynthetic enzymes. Planta 196: 239–244

    Article  CAS  Google Scholar 

  • Bennett R, Kiddle G & Wallsgrove RM (1996) Biosynthesis of benzylglucosinolate, cyanogenic glucosides and phenylpropanoids in Carica papaya. Phytochem. 45: 59–66

    Article  Google Scholar 

  • Bennett R, Kiddle G & Wallsgrove RM (1997) Involvement of cytochrome-P450 in glucosinolate biosynthesis in white mustard A biochemical anomaly. Plant Physiol. 114: 1283–1291

    PubMed  CAS  Google Scholar 

  • Brodelius P (1985) The potential use of immobilized plant cell biotechnology. Trends Biotechnol. 3: 280–285

    Article  CAS  Google Scholar 

  • Dong X-Y, Bai S & Sun Y (1996) Production of L (+) - lactic acid with Rhizopus oryzae immobilized in polyurethane foam cubes. Biotech. Lett. 18: 225–228

    Article  CAS  Google Scholar 

  • Ishida BK (1988) Improved diosgenin production in Dioscorea deltoidea cell cultures by immobilization in polyurethane foam. Plant Cell Rep. 7: 270–273

    Article  CAS  Google Scholar 

  • Jain JC, Groot Wassink JWD, Reed DW & Underhill EW (1990) Persistent co-purification of enzymes catalyzing the sequential glucosylation and sulfation steps in glucosinolate biosynthesis. J. Plant Physiol. 136: 356–361

    CAS  Google Scholar 

  • Kirkland DF, Matsuo M & Underhill EW (1974) Detection of glucosinolates and myrosinase in plant tissue cultures. Lloydia 34: 195–198

    Google Scholar 

  • Kjaer A (1976) Glucosinolates in the cruciferae. In: Vaughan JG, Macleod AJ & Jones BMG (eds) The Biology and Chemistry of the Cruciferae (pp 207–219). Academic Press, London

    Google Scholar 

  • Komamine A, Sakuta M, Hirose M, Hirano H, Takagi T, Kakegawa K & Ozeki Y (1989) Regulation of secondary metabolism in relation to growth and differentiation. In: Kurz WGW(ed) Primary and Secondary Metabolism of Plant Cell Cultures, Vol 2(pp 49–52). Springer-Verlag, Berlin

    Google Scholar 

  • Lindsey K, Yeoman MM, Black GM & Mavituna F (1983) A novel method for the immobilisation and culture of plant cells. FEBS Lett. 155: 143–149

    Article  CAS  Google Scholar 

  • Lotmani B (1988) Induction de deux lignées de cals et de culture cellulaire de raifort (Armoracia rusticana) caractérisation de leur activité péroxydasique. Thèse de Doctorat de l'Université d'Aix-Marseille I

  • Lotmani B & Rabier J (1988) Induction of two callus lines from horseradish (Armoracia rusticana) and their peroxidase characterization. C. R. Acad. Sci. Paris 307, Serie III: 215–220

    CAS  Google Scholar 

  • Ludwig-Muller J, Rausch T, Lang S & Hilgenberg W(1990) Plasma membrane bound high pI peroxidase isoenzymes convert tryptophan to indole-3–acetaldoxime. Phytochem. 29: 1397–1400

    Article  Google Scholar 

  • Ludwig-Muller J, Schubert B, Pieper K, Ihmig S & Hilgenberg W (1997) Glucosinolate content in susceptible and resistant Chinese cabbage varieties during development of clubroot disease. Phytochem. 44: 407–414

    Article  Google Scholar 

  • Masuda H, Takahashi T & Sugawara S (1988) Acid and alkaline invertases in suspension cultures of sugar beet cells. Plant Physiol. 86: 312–317

    Article  PubMed  CAS  Google Scholar 

  • Mavituna F & Park JM (1985) Growth of immobilized plant cells in reticulate polyurethane foam matrices. Biotech. Lett. 7: 637–640

    Article  CAS  Google Scholar 

  • Mevy JP, Rabier J, Quinsac A, Krouti M & Ribaillier D (1997) Glucosinolate contents of regenerated plantlets from embryoids of horseradish. Phytochemistry 44: 1469–1471

    Article  CAS  Google Scholar 

  • Morell M & Les Copeland (1985) Sucrose synthase of soybean nodules. Plant Physiol. 78: 149–154

    PubMed  CAS  Google Scholar 

  • Murashige T & Skoog F (1962) A revised medium for rapid growth and bio-assay with tobacco cultures. Physiol. Plant. 15: 473–497

    Article  CAS  Google Scholar 

  • Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153: 375–380

    CAS  Google Scholar 

  • Oldfield MF, Bennett R, Kiddle G, Wallsgrove RM & Botting NP (1999) Biochemical characterisation of an aldoxime-forming flavoprotein involved in 2–phenylethylglucosinolate biosynthesis in Brassica species. Plant Physiol. Biochem. 37: 99–108

    Article  CAS  Google Scholar 

  • Ono K, Nakao M, Toyota M, Terashi Y, Yamada M, Kohno T & Asakawa Y (1998) Catechin production in cultured Polygonum hydropiper cells. Phytochem. 49: 1935–1939

    Article  CAS  Google Scholar 

  • Payne GF, Bringi V, Prince C & Shuler ML (1992) Plant Cell and Tissue Culture in Liquid Systems. Oxford University Press, New York

    Google Scholar 

  • Quinsac A (1993) Les glucosinolates et leurs dérivés dans les crucifères. Analyses par chromatographie en phase liquide et perspectives d'utilisation de l'electrophorèse capillaire. Thèse de Doctorat de l'université d'Orléans

  • Rhodes MJC (1989) Outlook for future research In: Kurz WGW (ed) Primary and Secondary Metabolism of Plant Cell Cultures, Vol 2(pp 49–52). Springer-Verlag, Berlin

    Google Scholar 

  • Rhodes MJC, Smith JI & Robins RJ (1987) Factors affecting the immobilisation of plant cells on reticulated polyurethane foam particles. Appl. Microbiol. Biotechnol. 26: 28–35

    Article  CAS  Google Scholar 

  • Sy LK & Brown GD (1999) Coniferaldehyde derivatives from tissue culture of Artemisia annua and Tanacetum parthenium. Phytochem. 50: 781–785

    Article  CAS  Google Scholar 

  • Vianello A, Zancani M, Nagy G & Macri F (1997) Guaiacol peroxidase associated to soybean root plasma-membranes oxidizes ascorbate. J. Plant Physiol. 150: 573–577

    CAS  Google Scholar 

  • Verhoeven DTH, Verhagen H, Goldbohm RA, Vandenbrandt PA & Vanpoppel G (1997) A review of mecanisms underlying anticarcinogenicity by Brassica vegetables. Chemico-Biological Interactions 103: 79–129

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mevy, J., Rabier, J., Quinsac, A. et al. Sucrose metabolism and indoleglucosinolate production of immobilized horseradish cells. Plant Cell, Tissue and Organ Culture 57, 163–171 (1999). https://doi.org/10.1023/A:1006325222785

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006325222785

Navigation