Skip to main content
Log in

The gene encoding T protein of the glycine decarboxylase complex involved in the mitochondrial step of the photorespiratory pathway in plants exhibits features of light-induced genes

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We have isolated and characterized a genomic clone encoding the 41 kDa monomer T-protein. This gene called gdcT spans approximately 3 kbp and is composed of four exons interrupted by three introns (321, 691 and 114 bp). The splice sites for donor and acceptor are in agreement with the canonical GT/AG rule. Primer extension strongly suggests the presence of two major transcription start sites. The first transcription start site around 43 bases downstream of a putative TATA box was assigned the +1 position. The second (+31) is not correlated with a putative TATA box, but revealed a pyrimidine-rich region which is very similar to the initiator element. Sequence analysis of the 5′-upstream region of the gene reveals three consensus regions found in the nuclear genes encoding the chloroplastic proteins of ribulose-1,5-bisphosphate carboxylase (rbcS) and the chlorophyll a/b-binding protein (cab) such as an AT-rich sequence localized at -539 to -530, a box II core sequence GGTTAA (-123 to -118) and between -364 and -354 a tandem GATA motif. These elements are known to be involved respectively in the regulation of light-responsiveness and cell-type specificity expression of plant genes. Gel shift assays indicate that the box II core sequence could bind protein nuclear factors similar to the trans-acting factor which interact with corresponding promoter region of rbcS gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ayer DA, Dynan WS: Simian virus 40 major late promoter: a novel tripartite structure that includes intragenic sequences. Mol Cell Biol 8: 2021–2033 (1988).

    Google Scholar 

  2. Bourguignon J, Macherel D, Neuburger M, Douce R: Isolation, characterization, and sequence analysis of a cDNA clone encoding L-protein, the dihydrolipoamide dehydrogenase component of the glycine cleavage system from pea-leaf mitochondria. Eur J Biochem 204: 865–873 (1992).

    Google Scholar 

  3. Bourguignon J, Neuburger M, Douce R: Resolution and characterisation of the glycinecleavage reaction in pea leaf mitochondria. Biochem J 255: 169–178 (1988).

    Google Scholar 

  4. Bourguignon J, Vauclare P, Merand V, Forest E, Neuburger M, Douce R: Glycine decarboxylase complex from higher plants: molecular cloning, tissue distribution and mass spectrometry analyses of the T protein. Eur J Biochem 217: 377–386 (1993).

    Google Scholar 

  5. Breathnach R, Benoist C, O Hare K, Gannon F, Chambon P: Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequemces at the exonintron bounderies. Proc Natl Acad Sci USA 75: 4853–4857 (1978).

    Google Scholar 

  6. Breathnach R, Chambon P: Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem 50:, 349–383 (1981).

    Google Scholar 

  7. Bucher P: Weight matrix descriptions of four eucaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J Mol Cell Biol 212: 563–578 (1990).

    Google Scholar 

  8. Castresana C, Garcia-Luque I, Alonso E, Malik VS, Cashmore AR: Both positive and negative elements mediate expression of a photoregulated CAB gene from Nicotiana plumbaginifolia. EMBO J 7: 1929–1936 (1988).

    Google Scholar 

  9. Castresana C, Staneloni R, Malik VS, Cashmore AR: Molecular characterization of two clusters of genes encoding the type I CAB polypeptides of PSII in Nicotiana plumbaginifolia. Plant Mol Biol 10: 117–126 (1987).

    Google Scholar 

  10. Coruzzi G, Broglie R, Edwards C, Chua N-H: Tissue-specific and light-regulated expression of a pea nuclear gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase. EMBO J 3:1671–1679 (1984).

    Google Scholar 

  11. Datta N, Cashmore AR: Binding of a pea nuclear protein to promoters of certain photo-regulated genes is modulated by phosphorylation. Plant Cell 1: 1069–1077 (1989).

    Google Scholar 

  12. Day DA, Neuburger M, Douce R: Biochemical characterization of chlorophyll-free mitochondria from pea leaves. Aust J Plant Physiol 12: 219–228 (1985).

    Google Scholar 

  13. Douce R, Bourguignon J, Macherel D, Neuburger M: The glycine decarboxylase system in higher plant mitochondria: structure, function and biogenesis. Biochem Soc Trans 22: 184–188 (1994).

    Google Scholar 

  14. Fluhr R, Moses P, Morelli G, Coruzzi G, Chua N-H: Expression dynamics of the pea rbcS multigene family and organ distribution of the transcripts. EMBO J 5: 2063–2071 (1986).

    Google Scholar 

  15. Gidoni D, Brosio P, Bond-Nutter D, Bedbrook J, Dunsmuir P: Novel cis-acting elements in petunia cab gene promoters. Mol Gen Genet 215: 337–344 (1989).

    Google Scholar 

  16. Green PJ, Kay SA, Chua N-H: Sequence-specific interactions of pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene. EMBO J 6: 2543–2549 (1987).

    Google Scholar 

  17. Green PJ, Yong MH, Cuozzo M, Kano-Murakami Y, Silverstein P, Chua N-H: Binding site requirements for pea nuclear protein factor GT1 correlate with sequences required for light-dependent transcriptional activation of the rbcS-3A gene. EMBO J 7: 4035–4044 (1988).

    Google Scholar 

  18. Hayasaka K, Nanao K, Takada K, Okamura-Ikeda K, Motokawa Y: Isolation and sequence determination of cDNA encoding human T-protein of the glycine cleavage system. Biochem Biophys Res Commun 192: 766–771 (1993).

    Google Scholar 

  19. Herrera-Estrella L, van den Broeck G, Maenhaut R, van Montagu M, Schell J, Timko M, Cashmore A: Light-inducible and chloroplast-associated expression of a chimaeric gene introduced into Nicotiana tabacum using a Ti plasmid vector. Nature 310: 115–120 (1984).

    Google Scholar 

  20. Husic DW, Husic HD, Tolbert NE: The oxidative photosynthetic carbon cycle or C2 cycle. Crit Rev Plant Sci 5: 45–100 (1987).

    Google Scholar 

  21. Kikuchi G, Hiraga K: The mitochondrial glycine cleavage system. Mol Cell Biochem 45: 137–149 (1982).

    Google Scholar 

  22. Kim Y, Oliver DJ: Molecular cloning, transcriptional characterization, and sequencing of the cDNA encoding the H-protein of the mitochondrial glycine decarboxylase complex in peas. J Biol Chem 265: 848–853 (1990).

    Google Scholar 

  23. Klein SM, Sagers RD: Glycine metabolism. II. Kinetic and optical studies on the glycine decarboxylase system from Peptococcus glycinophilus. J Biol Chem 241: 206–209 (1966).

    Google Scholar 

  24. Kochi H, Kikuchi G: Reaction of glycine synthesis and glycine cleavage catalysed by extracts of Arthrobacter globiformis. Arch Biochem Biophys 132: 359–369 (1969).

    Google Scholar 

  25. Kopriva S, Turner SR, Rawsthorne S, Bauwe H: T-protein of the glycine decarboxylase multienzyme complex: evidence for partial similarity to formyltetrahydrofolate synthase. Plant Mol Biol 27: 1215–1220 (1995).

    Google Scholar 

  26. Lam E, Chua NH: GT-1 binding site confers light-responsive expression in transgenic tobacco. Science 248: 471–474 (1990).

    Google Scholar 

  27. Lorimer GH, Andrews TJ: The C2 chemo-and photo-respiratory carbon oxydation cycle. In: Hatch MD, Boardman NK (eds) The biochemistry of Plants, vol. 8. Photosynthesis, pp. 329–374. Academic Press, New York (1981).

    Google Scholar 

  28. Lugert T, Werr W: A novel DNA binding domain in the Shrunken initiatorbinding protein (IBP1). Plant Mol Biol 25: 493–506 (1994).

    Google Scholar 

  29. Lütcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA: Selection of AUG initiation codons differs in plants and animals. EMBO J 6: 43–48 (1987).

    Google Scholar 

  30. Maas C, Schaal S, Weer W: Afeedback control element near the transcription start site of the maize Shrunken gene determines promoter activity. EMBO J 9: 3447–3452 (1990).

    Google Scholar 

  31. Macherel D, Bourguignon J, Douce R: Cloning of the gene (gdcH) encoding Hprotein, a component of the glycine decarboxylase complex of pea (Pisum sativum L.). Biochem J 286: 627–630 (1992).

    Google Scholar 

  32. Macherel D, Lebrun M, Gagnon J, Neuburger M, Douce R: Primary structure and expression of H-protein, a component of the glycine cleavage system of pea leaf mitochondria. Biochem J 268: 783–789 (1990).

    Google Scholar 

  33. Neuburger M, Bourguignon J, Douce R: Isolation of a large complex from the matrix of pea leaf mitochondria involved in the rapid transformation of glycine into serine. FEBS Lett 207: 18–22 (1986).

    Google Scholar 

  34. Neuburger M, Douce R: Oxydation du malate, du NADH et de la glycine par les mitochondries de plantes en C3 et C4. C R Hebd Séanc Acad Sci Ser 285: 881–884 (1977).

    Google Scholar 

  35. Odell JT, Nagy F, Chua NH: Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810–812 (1985).

    Google Scholar 

  36. Okamura-Ikeda K, Fujiwara K, Yamamoto M, Hiraga K, Motokawa Y: Isolation and sequence determination of cDNA encodingTprotein of the glycine cleavage system. J Biol Chem 266: 4917–4921 (1991).

    Google Scholar 

  37. Okamura-Ikeda K, Ohmura Y, Fujiwara K, Motokawa Y: Cloning a dinucleotide sequence of the gcv operon encoding the Escherichia coli glycine-cleavage system. Eur J Biochem 216: 539–548 (1993).

    Google Scholar 

  38. Oliver DJ, Neuburger M, Bourguignon J, Douce R: Glycine metabolism by plant mitochondria. Plant Physiol 94: 833–839 (1990).

    Google Scholar 

  39. Pichersky E, Bernatzky R, Tanksley SD, Breidenbach RB, Kausch AP, Cashmore AR: Molecular characterization and genetic mapping of two clusters of genes encoding chlorophyll a/bbinding proteins in Lycopersicon esculentum (tomato). Gene 40: 247–258 (1985).

    Google Scholar 

  40. Sanger F, Nicklen S, Coulson AR: DNAsequencing with chainterminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5466 (1977).

    Google Scholar 

  41. Smale ST, Baltimore D: The initiator as a transcription control element. Cell 57: 103–113 (1989).

    Google Scholar 

  42. Smale ST, Schmidt MC, Berk AJ, Baltimore D: Transcriptional activation by SP1 as directed through TATA or initiator: spe318 cific requirement for mammalian transcription factor IID. Proc Natl Acad Sci USA 87: 4509–4513 (1990).

    Google Scholar 

  43. Srinivasan R, Berndt WA, Oliver DJ: Coordinated expression of photosynthetic and photorespiratory genes. In: Brennicke A, Kuck U (eds) Plant Mitochondria, pp. 160–169. VCH, Weinheim (1993). (1993).

    Google Scholar 

  44. Srinivasan R, Kraus C, Oliver DJ: Developmental expression of the glycine decarboxylase multienzyme complex in greening pea leaves. In: Lambers H, van der Plas LHW (eds) Molecular, Biochemical, and Physiological Aspects of plant Respiration, pp. 323–334. SPB Academic, The Hague (1992).

    Google Scholar 

  45. Srinivasan R, Oliver DJ: Light-dependent and tissuespecific expression of the Hprotein of the glycine decarboxylase complex. Plant Physiol 109: 161–168 (1995).

    Google Scholar 

  46. Turner SR, Hellen R, Ireland R, Ellis N, Rawsthorne S: The organisation and expression of the gene encoding the mitochondrial glycine decarboxylase complex and serine hydroxymethyltransferase in pea (Pisumsativum). Mol Gen Genet 236: 402–408 (1993).

    Google Scholar 

  47. Turner SR, Ireland R, Rawsthorne S: Cloning and characterization of the P subunit of glycine decarboxylase from pea (Pisum sativum). J Biol Chem 267: 5355–5360 (1992).

    Google Scholar 

  48. Turner S, Ireland R, Rawsthorne S: Purification and primary amino acid sequence of the L subunit of glycine decarboxylase. Evidence for a single lipoamide dehydrogenase in plant mitochondria. J Biol Chem 267: 7745–7750 (1992).

    Google Scholar 

  49. Ueda T, Pichersky E, Malik VS, Cashmore AR: Level of expression of the tomato rbcS-3A gene is modulated by a far upstream promoter element in a developmentally regulated manner. Plant Cell 1: 217–227 (1989).

    Google Scholar 

  50. Vauclare P, Diallo N, Bourguignon J, Macherel D, Douce R: Regulation of the expression of the glycine decarboxylase complex during pea leaf development. Plant Physiol 112: 1523–1530 (1996).

    Google Scholar 

  51. Walker JL, Oliver DJ: Glycine decarboxylase multienzyme complex: purification and partial characterization from pea leaf mitochondria. J Biol Chem 261: 2214–2221 (1986).

    Google Scholar 

  52. Walker JL, Oliver DJ: Lightinduced increases in the glycine decarboxylase multienzyme complex from pea leaf mitochondria. Arch Biochem Biophys 248: 626–638 (1986).

    Google Scholar 

  53. Zutter M, Santoro SA, Audrey SP, Tsung YL, Gafford A: The human _2 integrin gene promoter. J Biol Chem 269: 463–469 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vauclare, P., Macherel, D., Douce, R. et al. The gene encoding T protein of the glycine decarboxylase complex involved in the mitochondrial step of the photorespiratory pathway in plants exhibits features of light-induced genes. Plant Mol Biol 37, 309–318 (1998). https://doi.org/10.1023/A:1005954200042

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005954200042

Navigation