Skip to main content
Log in

Effects of calcium and nucleotides on the structure of insect flight muscle thin filaments

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

The structure of the insect flight muscle thin filament has been studied using a Drosophila mutant (Ifm(2)2) which does not contain thick filaments. Thin filaments that are biochemically identical to those of the wild type can be isolated free from thick filament contamination. We show that isolated thin filaments have different symmetries depending upon the calcium concentration. While the filaments mainly contain 13 subunits in six turns of the 5.9nm genetic helix in the absence of calcium, 50% of the filaments have 28 subunits in 13 turns of the genetic helix at calcium concentrations equivalent to those present during muscle contraction. We also show that the structure (mainly the helical order) of the thin filaments depends on the nature of the nucleotide bound to the actin monomers. Three-dimensional reconstructions of the thin filaments in the presence and absence of calcium show that tropomyosin moves between two different positions on the actin filament. However, in Drosophila the amplitude of the movement as well as the disorder in the positions of the components (tropomyosin, troponin complex) are larger than those generally observed in other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ball, E., Karlik, C. C., Beall, C. J., Saville, D. L., Sparrow, J. C., Bullard, B. & Fyrberg, E. A. (1987) Arthrin, a myofibrillar protein of insect flight muscle, is an actin-ubiquitin conjugate. Cell 51, 221–8.

    Article  PubMed  CAS  Google Scholar 

  • Barbas, J. A., Calceran, J., Krah-Jentcens, I., de la Pompa, J. L., Canal, I., Pongs, O. & Ferrus, A. (1991) Troponin I is encoded in the haplolethal region of the Shaker gene complex of Drosophila. Genes and Develop. 5, 132–40.

    CAS  Google Scholar 

  • Beall, C. J. & Fyrberg, E. (1991) Muscle abnormalities in Drosophila melanogaster heldup mutants are caused by missing or aberrant troponin-I isoforms. J. Cell Biol. 114, 941–51.

    Article  PubMed  CAS  Google Scholar 

  • Bremer, A., Henn, C., Golgie, K. N., Engel, A., Smith, P. R. & Aebi, U. (1994) Towards atomic interpretation of F-actin filament three-dimensional reconstructions. J. Mol. Biol. 742, 683–700.

    Article  Google Scholar 

  • Bullard, B., Bell, J., Craig, R. & Leonard, K. (1985) Arthrin: a new actin-like protein in insect flight muscle. J. Mol. Biol. 182, 443–54.

    Article  PubMed  CAS  Google Scholar 

  • Bullard, B., Dabrowska, R. & Winkelman, L. (1973) The contractile and regulatory proteins of insect ifight muscle. Biochem. J. 135, 277–86.

    PubMed  CAS  Google Scholar 

  • Bullard, B. Leonard, K., Larkins, A., Butcher, G., Karlik, C. & Fyrberg, E. (1988) Troponin of asynchronous flight muscle. J. Mol. Biol. 204, 621–37.

    Article  PubMed  CAS  Google Scholar 

  • Carlier, M.-F. & Pantaloni, D. (1988) Binding of phosphate to F-ADP-actin and role of F-ADP-Pi-actin in ATP-actin polymerization. J. Biol. Chem. 263, 817–25.

    PubMed  CAS  Google Scholar 

  • Clayton, J., Cripps, R., Sparrow, J. & Bullard, B. (1998) Interaction of troponin-H and glutathione-S-transferase in the indirect flight muscles of Drosophila melanogaster. J. Muscle Res. Cell Motil. 19, 117–127.

    Article  PubMed  CAS  Google Scholar 

  • Combeau, C. & Carlier, M. F. (1988) Probing the mechanism of ATP hydrolysis on F-actin using vanadate and structural analogs of phosphate BeF3 and AlF4. J. Biol. Chem. 263, 17429–36.

    PubMed  CAS  Google Scholar 

  • Crowther, R. A., Padron, R. & Craig, R. (1985) Arrangement of the heads of myosin in relaxed thick filaments from tarantula muscle. J. Mol. Biol. 184, 429–39.

    Article  PubMed  CAS  Google Scholar 

  • Fyrberg, E. & Beall, C. (.1990) Genetic approaches to myofibril form and function in Drosophila. Trends Genet. 6, 126–31.

    Article  PubMed  CAS  Google Scholar 

  • Fyrberg, E., Beall, C. & Fyrberg, C. C. (1991) From genes to tensile forces: genetic dissection of contractile protein assembly and function in Drosophila melanogaster. J. Cell Science, suppl. 14, 27–9.

    CAS  Google Scholar 

  • Gillis, J. M. & O'Brien, E. J. (1975) The effect.of calcium ions on the structure of reconstituted muscle thin filaments. J. Mol. Biol. 99, 445–59.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, K. C., Popp, D., Gebhard, W. & Kabsch, W. (1990) Atomic model of the actin filament. Nature 347, 44–9.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E. & Brown, W. (1967) The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J. Mol. Biol. 30, 383–434.

    PubMed  CAS  Google Scholar 

  • Kabsch, W., Mannhertz, H. G., Suck, D., Pai, E. F. & Holmes, K. C. (1990) Atomic structure of the actin: DNase I complex. Nature 347, 37–44.

    Article  PubMed  CAS  Google Scholar 

  • Karlik, C. C. & Fyrberg, E. A. (1986) Two Drosophila melanogaster tropomyosin genes: structural and functional aspects. Mol. Cell Biol. 6, 1965–73.

    PubMed  CAS  Google Scholar 

  • Laemlli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–5.

    Article  Google Scholar 

  • Lehman, W., Craig, R. & Vibert, P. (1994) Ca-induced tropomyosin movement in Limulus thin filaments revealed by threedimensional reconstruction. Nature 368, 65–7.

    Article  PubMed  CAS  Google Scholar 

  • Lehman, W., Vibert, P., Uman, P. & Craig, R. (1995) Steric-blocking by tropomyosin visualized in relaxed vertebrate muscle thin. J. Mol. Biol. 251, 191–6.

    Article  PubMed  CAS  Google Scholar 

  • Lepault, J., Ranck, J.-L., Erk, I. & Carlier, M.-F. (1994) Small angle X-ray scattering and electron cryo-microscopy study of actin filaments: role of the bound nucleotide in the structure of F-actin. J. Struct. Biol. 112, 79–91.

    Article  PubMed  CAS  Google Scholar 

  • Lorenz, M., Popp, D. & Holmes, K. C. (1993) Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J. Mol. Biol. 234, 826–36.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, P. J., Cooch, J. T., Mannherz, H. G. & Weeds, A. G. (1993) Structure of gelsolin segment I-actin complex and the mechanism of filament severing. Nature 364, 685–92.

    Article  PubMed  CAS  Google Scholar 

  • Miller, A. & Tregear, R. T. (1972) Structure of insect fibrillar flight muscle in the presence and absence of ATP. J. Mol. Biol. 70, 85–104.

    Article  PubMed  CAS  Google Scholar 

  • Milligan, R. A., Whittaker, M. & Safer, D. (1990) Molecular structure of F-actin and location of surface binding sites. Nature 348, 217–21.

    Article  PubMed  CAS  Google Scholar 

  • Newman, R., Butcher, G. W., Bullard, B. & Leonard, K. R. (1992) A method for determining the periodicity of a troponin component in isolated insect flight muscle thin filaments by gold /Fab labelling. J. Cell Science 101, 503–8.

    PubMed  Google Scholar 

  • O'Brien, E. J., Gillis, J. M. & Couch, J. (1975) Symmetry and molecular arrangement in paracrystals of reconstituted muscle thin filaments. J. Mol. Biol. 99, 461–75.

    Article  PubMed  Google Scholar 

  • Orlova, A. & Egelman, E. H. (1992) Structural basis for the destabilization of F-actin by phosphate release following ATP hydrolysis. J. Mol. Biol. 227, 1043–53.

    Article  PubMed  CAS  Google Scholar 

  • Peckham, M., Cripps, R., White, D. & Bullard, B. (1992) Mechanics and protein content of insect flight muscles. J. Exp. Biol. 168, 57–76.

    CAS  Google Scholar 

  • Perelroizen, I., Didry, D., Christensen, H., Chua, N.-H. & Carlier, M.-F. (1996) Role.of nucleotide exchange and hydrolysis in the function of profilin in action assembly. J. Biol. Chem. 271, 12302–9.

    Article  PubMed  CAS  Google Scholar 

  • Popp, D. & Maeda, Y. (1993) Calcium ions and the structure of muscle actin filament. An X-ray diffraction study. J Mol. Biol. 229, 279–85.

    Article  PubMed  CAS  Google Scholar 

  • Pringle, J. W. S. (1978) Stretch activation of muscle: function and mechanism. Proc. R. Soc. Lond. B. 201, 107–30.

    Article  PubMed  CAS  Google Scholar 

  • Reedy, M. K. (1968) Ultrastructure of insect flight muscle. I. Screw sense and structural grouping in the rigor cross-bridge lattice. J. Mol. Biol. 31, 155–76.

    Article  PubMed  CAS  Google Scholar 

  • Reedy, M. K. & Reedy, M. C. (1985) Rigor crossbridge structure in tilted single filament layers and flared-X formations from insect flight muscle. J. Mol. Biol. 185, 145–76.

    Article  PubMed  CAS  Google Scholar 

  • Reedy, M. C., Reedy, M. K., Leonard, K. R. & Bullard, B. (1994) Gold/Fab immuno electron microscopy localization of troponin H and troponin T in Lethocerus flight muscle. J. Mol. Biol. 239, 52–67.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz, H., Lucaveche, C., Reedy, M. & Taylor, K.A. (1994) Oblique section 3-D reconstruction of relaxed insect flight muscle reveals cross-bridge lattice in helical registration. Bioph. J. 67, 1620–33.

    Article  CAS  Google Scholar 

  • Schutt, C. E., Myslik, J. C., Rozycki, M. D., Goonesekere, N. C. & Lindberg, U. (1993) The Structure of crystalline profilin-beta-actin. Nature 365, 810–16.

    Article  PubMed  CAS  Google Scholar 

  • Sheterline, P., Clayton, J. & Sparrow, J. (1995) Actin. Protein profile 2, 1–103.

    PubMed  CAS  Google Scholar 

  • Sparrow, J., Drummond, D., Peckham, M., Hennessey, E. & White, D. (1991) Protein engineering and the study of muscle contraction in Drosophila flight muscles. J. Cell Science, suppl. 14, 73–8.

    CAS  Google Scholar 

  • Sparrow, J. C., Drummond, D. R., Hennessey, E. S., Clayton, J. D. & Lindegaard, F. B. (1992) Drosophila mutants and the study of myofibrillar assembly and function. In Molecular Biology of Muscle (edited by Elhaj, A.) pp. 111–29. SEB Symposium 46.

  • Stokes, D. L. & Derosier, D. J. (1987) The variable twist of actin and its modulation by actin-binding proteins. J. Cell Biol. 104, 1005–17.

    Article  PubMed  CAS  Google Scholar 

  • Tregear, R. T. (1983) Physiology of insect flight muscle. In Handbook of Physiology. Skeletal Muscle (edited by Peachey, L. D.), pp. 486–506. Bethesda: American Physiological Society.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz, T., Bullard, B. & Lepault, J. Effects of calcium and nucleotides on the structure of insect flight muscle thin filaments. J Muscle Res Cell Motil 19, 353–364 (1998). https://doi.org/10.1023/A:1005341502973

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005341502973

Keywords

Navigation