Skip to main content
Log in

The Role of Antioxidant Systems in the Cold Stress Response of Escherichia coli

  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The response of aerobically grown Escherichia coli cells to the cold shock induced by the rapid lowering of growth temperature from 37 to 20°C was found to be basically the same as the oxidative stress response. The enhanced sensitivity of cells deficient in two superoxide dismutases, Mn-SOD and Fe-SOD, and the increased expression of the Mn-SOD gene, sodA, in response to cold stress were interpreted as both oxidative and cold stresses are due to a rise in the intracellular level of superoxide anion. The long-term cultivation of E. coli at 20°C was also accompanied by the typical oxidative stress response reactions—an enhanced expression of the Mn-SOD and catalase HPI genes and a decrease in the intracellular level of reduced glutathione (GSH) and in the GSH/GSSG ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Demple, B., Regulation of Bacterial Oxidative Stress Genes, Annu. Rev. Genet., 1991, vol. 25, pp. 315–337.

    Google Scholar 

  2. Jones, P.G., Van Bogelen, R.A., and Neidhardt, F.C., Induction of Proteins in Response to Low Temperature in Escherichia coli, J. Bacteriol., 1987, vol. 169, pp. 2092–2095.

    Google Scholar 

  3. Freeman, M.L., Spitz, D.S., and Meredith, M.J., Does Heat Shock Enhance Oxidative Stress? Studies with Ferrous and Ferric Iron, Radiat. Res., 1990, vol. 124, pp. 288–293.

    Google Scholar 

  4. Privalle, C.T. and Fridovich, I., Induction of Superoxide Dismutase in Escherichia coli by Heat Shock, Proc. Natl. Acad. Sci. USA, 1987, vol. 84, pp. 2723–2726.

    Google Scholar 

  5. Tao, K., Makino, K., Yonei, S., Nacata, A., and Shinagawa, H., Molecular Cloning and Nucleotide Sequencing of oxyR, the Positive Regulatory Gene of a Regulon for an Adaptive Response to Oxidative Stress in Escherichia coli: Homologies between OxyR Protein and a Family of Bacterial Activator Proteins, Mol. Gen. Genet., 1989, vol. 218, pp. 371–376.

    Google Scholar 

  6. Miller, J.H., Experiments in Molecular Genetics, Cold Spring Harbor: Cold Spring Harbor Lab., 1972. Translated under the title Eksperimenty v molekulyarnoi genetike, Moscow: Mir, 1976, p. 463.

    Google Scholar 

  7. Beers, R.F. and Sizer, I.W., A Spectrophotometric Method for Measuring the Breakdown of Hydrogen Peroxide by Catalase, J. Biol. Chem., 1952, vol. 196, pp. 133–140.

    Google Scholar 

  8. Tietze, F., Enzymic Method for Quantitative Determination of Nanogram Amounts of Total and Oxidized Glutathione: Applications to Mammalian Blood and Other Tissues, Anal. Biochem., 1969, vol. 27, pp. 502–522.

    Google Scholar 

  9. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    Google Scholar 

  10. Triggs-Raine, B.L. and Loewen, P.C., Physical Characterization of the katG Encoding Catalase HPI of Escherichia coli, Gene, 1987, vol. 52, pp. 121–128.

    Google Scholar 

  11. Carlioz, A. and Touati, D., Isolation of Superoxide Dismutase Mutants in Escherichia coli: Is Superoxide Dismutase Necessary for Aerobic Life?, EMBO J., 1986, vol. 5, pp. 623–630.

    Google Scholar 

  12. Touati, D., Jacques, M., Tardat, B., Bouchard, L., and Despied, S., Lethal Oxidative Damage and Mutagenesis Are Generated by Iron in the Δfur Mutants of Escherichia coli: Protective Role of Superoxide Dismutase, J. Bacteriol., 1995, vol. 177, pp. 2305–2314.

    Google Scholar 

  13. Gonzälez-Flecha, B. and Demple, B., Homeostatic Regulation of Intracellular Hydrogen Peroxide Concentration in Aerobically Growing Escherichia coli, J. Bacteriol., 1997, vol. 179, pp. 382–388.

    Google Scholar 

  14. Oktyabrsky, O.N., Golyasnaya, N.V., Smirnova, G.V., Demakov, V.A., Posokhina, N.Kh., and Kholstova, T.A., Acidification of Escherichia coli and Salmonella typhimurium Cytoplasm Reduces the Mutagenic Effect of N-Methyl-N'-Nitro-N-Nitrosoguanidine, Mutat. Res., 1993, vol. 293, pp. 197–204.

    Google Scholar 

  15. Oktyabrsky, O.N. and Smirnova, G.V., Changes in the Redox Potential of Escherichia coli Culture and in Intracellular Glutathione Status under Osmotic Shock, Bioelectrochem. Bioenerg., 1993, vol. 326, pp. 287–294.

    Google Scholar 

  16. Panoff, J.-M., Thammavongs, B., Güeguen, M., and Boutibonnes, P., Cold Stress Responses in Mesophilic Bacteria, Cryobiology, 1998, vol. 36, pp. 75–83.

    Google Scholar 

  17. Smirnova, G.V., Muzyka, N.G., Glukhovchenko, M.N., and Oktyabrsky, O.N., Effects of Menadione and Hydrogen Peroxide on Glutathione Status in Growing Escherichia coli, Free Rad. Biol. Med., 2000, vol. 28, no. 7, pp. 1009–1016.

    Google Scholar 

  18. Shiloach, J. and Bauer, S., High-Yield Growth of E. coli at Different Temperatures in a Bench-Scale Fermentor, Biotechnol. Bioeng., 1975, vol. 17, pp. 227–239.

    Google Scholar 

  19. Gel'man, N.S., Lukoyanova, M.A., and Ostrovskii, D.N., Membrany bakterii i dykhatel'naya tsep' (Bacterial Membranes and Respiratory Chain), Moscow: Nauka, 1972, p. 246.

    Google Scholar 

  20. Imlay, J.A. and Fridovich, I., Superoxide Production by Respiring Membranes of Escherichia coli, Free Rad. Res. Commun., 1991, vols. 12–13, pp. 59–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnova, G.V., Zakirova, O.N. & Oktyabrskii, O.N. The Role of Antioxidant Systems in the Cold Stress Response of Escherichia coli. Microbiology 70, 45–50 (2001). https://doi.org/10.1023/A:1004840720600

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004840720600

Navigation