Skip to main content
Log in

Model filled rubber IV: Dependence of stress-strain relationship on filler particle morphology

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The addition of monodisperse size crosslinked polystyrene (PS) particles, synthesized by emulsifier-free emulsion polymerization, to polysulfide matrix enhanced mechanical properties of the cured rubbery composites. The modulus, fracture strength, and elongation at break increased with increasing filler volume fraction up to 30 wt % PS particles. The strength and elongation at break decreased with increasing particle diameter from 0.315 to 1.25 μm. The strength at break increased, but the extension decreased, as the particle crosslink density increased from 0 to 5 mol % DVB. Interparticle interactions are dominant and lead to the formation of clusters which form a network structure in PS particle filled composites. Since the number density, as well as the total surface area, of particles increase with decreasing particle diameter, interparticle attractions are enhanced, the tendency for cluster formation increased with decreasing particle size from 1.25 to 0.315 μm. As particle crosslink density was reduced, the porosity and surface roughness of particles increased. Then, the dispersion of particles in the matrix was enhanced and particle agglomeration reduced but more polymer matrix was adsorbed on the particles. These particles or clusters act as physical crosslinks, resulting in an increased total effective crosslink density in the filled composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Edwards, J. Mater. Sci. 25 (1990) 4175.

    Google Scholar 

  2. E. Schmidt, Ind. Eng. Chem. 43 (1951) 679.

    Google Scholar 

  3. P. Delfosse, Rubber Plastics Age 38 (1957) 257.

    Google Scholar 

  4. M. P. Wagner, Rubber Chem. Technol. 49 (1976) 703.

    Google Scholar 

  5. S. W. Shang, J. W. Williams and K. J. M. Soderholm, J. Mater. Sci. 27 (1992) 4949.

    Google Scholar 

  6. K. J. M. Soderholm and S. W. Shang, J. Dent. Res. 72 (1993) 1050.

    Google Scholar 

  7. R. S. Chahal and L. E. St. pierre, Macromolecules 1 (1968) 152.

    Google Scholar 

  8. Idem., Ibid. 1 (1969) 193.

  9. P. H. T. Vollenberg and D. Heikens, in "Composite Interface," edited by H. Ishida and J. L. Koenig (Elsevier Scientific, New York, 1986) p. 171.

    Google Scholar 

  10. D. M. Bigg, Polym. Composite 8 (1987) 115.

    Google Scholar 

  11. S. Mitsuishi, S. Kodama and H. Kawasaki, ibid. 9 (1988) 112.

    Google Scholar 

  12. A. Voet, J. Polym. Sci. 15 (1980) 327.

    Google Scholar 

  13. L. E. Nielsen, "Mechanical Properties of Polymer and Composites" (Marcel Dekker, New York, 1974) p. 411.

    Google Scholar 

  14. M. Sumita, T. Okuma, K. Miyasaka and K. Ishikawa, J. Appl. Polym. Sci. 27 (1982) 3059.

    Google Scholar 

  15. G. Landon, G. Lewis and G. F. Boden, J. Mater. Sci. 12 (1977) 1605.

    Google Scholar 

  16. G. Kraus, "Reinforcement of Elastomers" (JohnWiley & Sons, New York, 1965) p. 129.

    Google Scholar 

  17. Q. Li, PhD dissertation, University of Southern California, 1996.

  18. D. Zou et al., J. Polym. Sci.: Part A: Polym. Chem. 28 (1990) 1909.

    Google Scholar 

  19. D. Zou, S. Ma, R. Guan, M. Park, L. Sun, J. J. Aklonis and R. Salovey, Ibid. 30 (1992) 137.

    Google Scholar 

  20. Z. Y. Ding, S. Ma, D. Kriz, J. J. Aklonis and R. Salovey, J. Polym. Sci.: Part B: Polym. Phys. 30 (1992) 1189.

    Google Scholar 

  21. D. Zou, L. Sun, J. J. Aklonis and R. Salovey, J. Polym. Sci.: Part A: Polym Chem. 30 (1992) 1463.

    Google Scholar 

  22. J. Lee and M. Senna, Colloid Polym. Sci. 273 (1995) 76.

    Google Scholar 

  23. M. Okubo and T. Nakagawa, Ibid. 272 (1994) 530.

    Google Scholar 

  24. L. Sun, PhD dissertation, University of Southern California, 1992.

  25. A. N. Gent, in "Science and Technology of Rubber," edited by F. R. Eirich (Academic Press, New York, 1978) p. 424.

    Google Scholar 

  26. A. M. Bueche, J. Polym. Sci. 25 (1957) 139.

    Google Scholar 

  27. F. R. Eirich, "Science and Technology of Rubber" (Academic Press, New York, 1978).

    Google Scholar 

  28. J. F. Cai and R. Salovey, Polym. Eng. Sci. (1998), submitted.

  29. E. Guth and O. Gold, Phys. Rev. 53 (1938) 322.

    Google Scholar 

  30. S. Ahmed and F. R. Jones, J. Mater. Sci. 25 (1990) 4933.

    Google Scholar 

  31. J. Furukawa and E. Yamada, J. Appl. Polym. Sci. 52 (1994) 1587.

    Google Scholar 

  32. D. S. Ogunniyi, Elastomerics 9 (1986) 24.

    Google Scholar 

  33. J. N. Goodier, J. Appl. Mech. Trans. AME A3 (1988) 55.

    Google Scholar 

  34. A. Oberth, Rubber Chem. Technol. 40 (1967) 1337.

    Google Scholar 

  35. F. R. Eirich, Engineering Fracture Mechanics 5 (1973) 555.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, J.J., Salovey, R. Model filled rubber IV: Dependence of stress-strain relationship on filler particle morphology. Journal of Materials Science 34, 4719–4726 (1999). https://doi.org/10.1023/A:1004666517500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004666517500

Keywords

Navigation