Skip to main content
Log in

Ecophysiology of algae living in highly acidic environments

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Highly acidic environments are inhabited by acidophilic as well as acidotolerant algae. Acidophilic algae are adapted to pH values as low as 0.05 and unable to grow at neutral pH. A prerequisite for thriving at low pH is the reduction of proton influx and an increase in proton pump efficiency. In addition, algae have to cope with a limited supply of carbon dioxide for photosynthesis because of the absence of a bicarbonate pool. Therefore, some algae grow mainly in near terrestrial situations to increase the CO2-availability or actively move within the water body into areas with high CO2. Beside these direct effects of acidity, high concentrations of heavy metals and precipitation of nutrients cause indirect effects on the algae in many acidic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertano, P., 1995. Microalgae from sulphuric acid environments. In Wiessner, W., E. Schnepf & R. C. Starr (eds), Algae, Environment and Human Affairs. Biopress Ltd, Bristol: 19–39.

    Google Scholar 

  • Albertano, P. & G. Pinto, 1986. The action of heavy metals on the growth of the acidophilic algae. Boll. Soc. Natur. Napoli 45: 319–328.

    Google Scholar 

  • Albertano, P., G. Pinto & R. Taddei, 1980a. Evaluation of toxic effects of heavy metals on unicellular algae. I. The influence of inoculum concentration on the evaluation of toxicity. Delpinoa 21: 75–86.

    Google Scholar 

  • Albertano, P., G. Pinto & R. Taddei, 1980b. Evaluation of toxic effects of heavy metals on unicellular algae. II. Growth curves with different concentrations of heavy metals. Delpinoa 21: 23–34.

    Google Scholar 

  • Albertano, P., G. Pinto & R. Taddei, 1980c. Evaluation of toxic effects of heavy metals on unicellular algae. III. Substraction of toxic elements from the medium by the cells. Delpinoa 21: 47–61.

    Google Scholar 

  • Albertano, P., G. Pinto, A. Pollio & R. Taddei, 1990. Morphology, ultrastructure and ecology of an acidophilic alga, Pseudococcomyxa simplex (Mainx) Fott (Chlorococcales). Algological Studies. 59: 81–95.

    Google Scholar 

  • Albertano, P. & R. Taddei, 1980. Evaluation of toxic effects of heavy metals on unicellular algae. IV. Effects of inoculum size on inhibition type. Delpinoa 21: 71–77.

    Google Scholar 

  • Ascione, R., W. Southwick & J. R. Fresco, 1966. Laboratory culturing of a thermophilic alga at high temperature. Science 153: 752–755.

    Google Scholar 

  • Badger, M. R. & G. D. Price, 1992. The CO2 concentrating mechanism in cyanobacteria and microalgae. Physiol. Plant. 84: 606–615.

    Google Scholar 

  • Beardall, J. & L. Entwisle, 1984. Internal pH of the obligate acidophile Cyanidium caldarium (Rhodophyta?). Phycologia 23: 397–399.

    Google Scholar 

  • Benz, R. & D. Cros, 1978. Influence of sterols on ion transport through lipid bilayer membranes. Biochim. Biophys. Acta 506: 265–280.

    Google Scholar 

  • Biedlingmaier, S., G. Wanner & A. Schmidt, 1987. A correlation between detergent tolerance and cell wall structure in green algae. Z. Naturforsch. 42c: 245–250.

    Google Scholar 

  • Boavida, M. J. & R. T. Heath, 1986. Phosphatase activity of Chlamydomonas acidophila Negoro (Volvocales, Chlorophyceae). Phycologia 25: 400–404.

    Google Scholar 

  • Brinkman, R., R. Margaria & F. J.W. Roughton, 1933. The kinetics of the carbon dioxide-carbonic acid reaction. Phil. Trans. Soc. A 232: 65–97.

    Google Scholar 

  • Brock, T. D. 1971. Bimodal distribution of pH values of thermal springs of the world. Geol. Soc. Am. Bull 82: 1393–1394.

    Google Scholar 

  • Brock, T. D. 1978a. The habitats. In Brock, T. D., (ed.), ThermophilicMicro-organisms and Life at High Temperatures. Springer-Verlag, New York: 12–38.

    Google Scholar 

  • Brock, T. D., 1978b. A sour world: Life and death at low pH. In Brock, T. D., (ed.), Thermophilic Micro-organisms and Life at High Temperatures. Springer-Verlag, New York: 387–392.

    Google Scholar 

  • Campbell, P. G. C. & P. M. Stokes, 1985. Acidification and toxicity of metals to aquatic biota. Can. J. Fish. aquat. Sci. 42: 2034–2049.

    Google Scholar 

  • Capasso, L. & G. Pinto, 1982. Restistance of the alga Spermatozopsis acidophila Kalina (Chlorophyta, Volvovales) to heavy metals. Giornale Bot. Ital. 116: 275–282.

    Google Scholar 

  • Dodge, J. D., 1973. The Fine Structure of Algal Cells, Academic Press, London: 21–55.

    Google Scholar 

  • Doemel, W. N. & T. D. Brock, 1971. The physiological ecology of Cyanidium caldarium. J. gen. Microbiol. 67: 17–32.

    Google Scholar 

  • Droop, M. R., 1974. Heterotrophy of carbon. In Stewart, W. D. P. (ed.), Algal Physiology and Biochemistry, Botanical Monographs. Vol. 10. Blackwell Scientific Publ. Oxford: 530–559.

    Google Scholar 

  • Enami, I., H. Akutsu & Y. Kyogoku, 1986. Intracellular pH regulation in an acidophilic unicellular alga, Cyanidium caldarium: 31P-NMR determination of intracellular pH. Plant Cell Physiol. 27: 1351–1359.

    Google Scholar 

  • Enami, I. & M. Kura-Hotta, 1984. Effect of intracellular ATP-levels on the light-induced H+ efflux from intact cells of Cyanidium caldarium. Plant Cell Physiol. 25: 1107–1113.

    Google Scholar 

  • Fyson, A., 2000. Angiosperms in acidic waters at pH 3 and below. Hydrobiologia 433: 129–135.

    Google Scholar 

  • Gadd, G. M., 1986. Fungal responses towards heavy metals. In Herbert, R. A. & G. A. Codd (eds), Microbes in Extreme Environments. Academic Press, London: 83–110.

    Google Scholar 

  • Gehl, K. A. & B. Colman, 1985. Effect of external pH on the internal pH of Chlorella saccharophila. Plant Physiol. 77: 917–921.

    Google Scholar 

  • Geib, K., D. Golldack & H. Gimmler, 1996. Is there a requirement for an external carbonic anhydrase in the extremely acid-resistant green alga Dunaliella acidophila? Eur. J. Phycol. 31: 273–284.

    Google Scholar 

  • Gimmler, H., 1992. Mechanisms of the acid resistance of Dunaliella acidophila. In Murata, N. (ed.), Research in Photosynthesis. Vol. IV. Kluwer Academic Publishers, Dordrecht: 203–210.

    Google Scholar 

  • Gimmler, H. & U. Weis. 1992. Dunaliella acidophila-life at pH 1.0. In Avron, M. & A. Ben-Amotz (eds), Dunaliella-Physiology, Biochemistry and Biotechnology. CRC Press, Boca Raton: 99–133.

    Google Scholar 

  • Gimmler, H., H. Kugel, D. Leibfritz & A. Mayer, 1988. Cytoplasmic pH of Dunaliella parva and Dunaliella acidophila as monitored by in vivo (31P) NMR spectroscopy and the DMO technique. Physiol. Plant. 74: 521–530.

    Google Scholar 

  • Gimmler, H., U. Weiss & C. Weiss, 1989. pH-Regulation and membrane potential of the extremely acid resistant green alga Dunaliella acidophila. In Dainty, J. (ed.), Plant Membrane Transport. Elsevier Science Publ, Venice: 389–390.

    Google Scholar 

  • Gimmler, H., C. Weiss, M. Baier & W. Hartung, 1990. The conductance of the plasmalemma for CO2. J. Exp. Bot. 41: 785–795.

    Google Scholar 

  • Gross, W., 1999. Revision of comparative traits for the acido-and thermophilic red algae Cyanidium and Galdieria. In Seckbach, J. (ed.), Enigmatic Micro-organisms and Life in Extreme Environments. Kluwer Academic Publishers, Dordrecht: 437–446.

    Google Scholar 

  • Gross, W., J. Küver, G. Tischendorf, N. Bouchaala & W. Büsch, 1998. Cryptoendolithic growth of the red alga Galdieria sulphuraria in volcanic areas. Eur. J. Phycol. 33: 25–31.

    Google Scholar 

  • Gross, W. & C. Oesterhelt, 1999. Ecophysiological studies on the red alga Galdieria sulphuraria isolated from south-west Iceland. Plant Biol. 1: 694–700.

    Google Scholar 

  • Gross, W. & C. Schnarrenberger, 1995. Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria. Plant Cell Physiol. 36: 633–638.

    Google Scholar 

  • Guy, R. D. & C. L. Chakrabarti, 1976. Studies of metal-organic interactions in model systems pertaining to natural waters. Can. J. Chem. 54: 2600–2611.

    Google Scholar 

  • Hargreaves, J. W. & B. A. Whitton, 1976a. Effect of pH on growth of acid stream algae. Br. phycol. J. 11: 215–223

    Google Scholar 

  • Hargreaves, J. W. & B. A. Whitton, 1976b. Effect of pH on tolerance of Hormidium rivulare to zinc and copper. Oecologia 26: 235–243.

    Google Scholar 

  • Hargreaves, J. W., E. J. H. Lloyd & B. A. Whitton, 1975. Chemistry and vegetation of highly acidic streams. Freshwat. Biol. 5: 564–576.

    Google Scholar 

  • Havas, M. & T. C. Hutchinson, 1983. The Smoking Hills: natural acidification of an aquatic ecosystem. Nature 301: 23–27.

    Google Scholar 

  • Hirsch, R., M. De Guia, G. Falkner & H. Gimmler, 1993. Flexible coupling of phosphate uptake in Dunaliella acidophila at extremely low pH values. J. Exp. Bot. 44: 1321–1330.

    Google Scholar 

  • Hosiaisluoma, V., 1975. On the ecology of Euglena mutabilis from peat bogs in Finland. Ann. Bot. Finnici 12: 35–36.

    Google Scholar 

  • Kimmel, W. G., 1983. The impact of acid mine drainage on the stream ecosystem. In Majumdar, S. K. & W. W. Miller (eds), Pennsylvania Coal: Resources, Technology and Utilization. The Pa. Acad. Sci. Publ., PA: 424–437.

    Google Scholar 

  • Komatsu, H. & P. L. Chong, 1998. Low permability of liposomal membranes composed of bipolar tetraether lipids from thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biochemistry 37: 107–115.

    Google Scholar 

  • Kristjansson, J. K. & K. O. Stetter, 1992. Thermophilic bacteria. In Kristjansson, J. K. (ed.), Thermophilic Bacteria. CRC Press, Boca Raton, Fl.: 1–18.

    Google Scholar 

  • Moreira, D., A. López-Archilla, R. Amils & I. Marín, 1994. Characterization of two new thermoacidophilic microalgae: Genome organization and comparison with Galdieria sulphuraria. FEMS Lett. 122: 109–114.

    Google Scholar 

  • Musacchio, A., G. Pinto, S. Sabato & R. Taddei, 1978. Aloresistenza in diversi ceppi di Cyanidium caldarium forma A et forma B. Delpinoa 18/19: 37–44.

    Google Scholar 

  • Nordstrom, D. K. & C. N. Alpers, 1999. Negative pH, efflorescent mineralogy and consequences for environmental restoration at the Iron Montain Superfund site, California. Proc. natl. Acad. Sci. U.S.A. 96: 3455–3462.

    Google Scholar 

  • Peterson, H. G., F. P. Healey & R. Wagemann, 1984. Metal toxicity to algae: a highly pH dependent phenomenon. Can. J. Fish. aquat. Sci. 41: 974–979.

    Google Scholar 

  • Planas, D. & F. P. Healey, 1978. Effect of arsenate on growth and phosphorus metabolism of phytoplankton. J. Phycol. 14: 337–341.

    Google Scholar 

  • Puel, F., C. Largeau & G. Giraud, 1987. Occurrence of a resistant biopolymer in the outer walls of the parasitic alga Prototheca wickerhamii (Chlorococcales): Ultrastructural and chemical studies. J. Phycol. 23: 649–656.

    Google Scholar 

  • Raven, J. A., 1990. Sensing pH? Plant Cell. Environ. 13: 721–729.

    Google Scholar 

  • Raven, J. A., 1997. Putting the C in phycology. Eur. J. Phycol 32: 319–333.

    Google Scholar 

  • Raven, J. A., J. Beardall & A. M. Johnston, 1982. Inorganic carbon transport in relation to H+ transport at the plasmalemma of photosynthetic cells. In Marmé, D., E. Marrè & R. Hertel (eds), Plasmalemma and Tonoplast: Their Functions in the Plant Cell. Elsevier Biomedical Press, Amsterdam: 41–47.

    Google Scholar 

  • Remis, D., B. Treffny & H. Gimmler, 1994. Light-induced H+ transport across the plasma membrane of the acid resistant green alga Dunaliella acidophila. Plant Physiol. Biochem. 32: 75–84.

    Google Scholar 

  • Satake, K. & Y. Saijo, 2000. Carbon dioxide content and metabolic activity of micro-organisms in some acid lakes in Japan. Limnol. Oceanogr. 19: 331–338.

    Google Scholar 

  • Schwartz, A. & W. Schwartz, 1965. Geomikrobiologische Untersuchungen VII: Ñber das Vorkommen von Mikro-organismen in Solfataren und heißen Quellen. Z. allge. Mikrobiol. 5: 395–405.

    Google Scholar 

  • Steinberg, C. E. W., A. Fyson & B. Nixdorf, 1999. Extrem saure Seen in Deutschland. Biologie in Unserer Zeit 29: 98–109.

    Google Scholar 

  • Taiz, L., 1994. Expansins: Proteins that promote cell wall loosening in plants. Proc. natl. Acad. Sci. U.S.A. 91: 7387–7389.

    Google Scholar 

  • Tsuzuki, M. & S. Miyachi, 1991. CO2 syndrome in Chlorella. Can. J. Bot. 69: 1003–1007.

    Google Scholar 

  • Wehr, J. D & B. A. Whitton, 1983. Aquatic cryptogams of natural acid springs enriched with heavy metals: the Kootenay Paint Pots, British Columbia. Hydrobiologia 98: 97–105.

    Google Scholar 

  • Weiss, C., U. Weiss, H. Kugel & H. Gimmler, 1990. Acid resistance and the CO2-conductance of the plasma membrane of Dunaliella acidophila. In Baltscheffsky, M. (ed.), Current Research in Photosynthesis. Vol. IV. Kluwer Academic Publishers, Dordrecht: 769–772.

    Google Scholar 

  • Whitton, B. A., 1970. Toxicity of heavy metals to freshwater algae: A review. Phykos 9: 116–125.

    Google Scholar 

  • Whitton, B. A. & B. M. Diaz, 1981. Influence of environmental factors on photosynthetic species composition in highly acidic waters. Verh. int. Ver Limnol. 21: 1459–1465.

    Google Scholar 

  • Whitton, B. A., S. L. J. Grainger, G. R. W. Hawley & J. W. Simon, 1991. Cell-bound and extracellular phosphatase activities of cyanobacterial isolates. Microbiol. Ecol. 21: 85–98.

    Google Scholar 

  • Whitton, B. A. & K. Satake, 1996. Phototrophs in highly acidic waters: an overview. Proceedings International Symposium on Acidic Deposition and its Impacts, Tsukuba, Japan, 10-12 Dec. 1996. 371 pp., pp. 204-211.

  • Wood, J. M. & H. K. Wang, 1983. Microbial resistance to heavy metals. Envir. Sci. Technol. 17: 582–590.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, W. Ecophysiology of algae living in highly acidic environments. Hydrobiologia 433, 31–37 (2000). https://doi.org/10.1023/A:1004054317446

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004054317446

Navigation