Skip to main content
Log in

Genetics in fisheries management

Hydrobiologia Aims and scope Submit manuscript

Abstract

Genetic analyses have much to offer fisheries managers, especially in the provision of tools enabling unequivocal specimen identification and assessment of stock structure. The three commonly-used genetic tools – allozymes, mitochondrial DNA and microsatellites – differ in their properties. These differences must be born in mind, especially when interpreting gene frequency data collected for stock structure research. Examples where genetic approaches have been used to identify specimens are given, with special attention being given to compliance and labelling issues. Treatment of stock structure focuses on Atlantic cod and on yellowfin, bigeye and albacore tunas. The different resolving powers of the various techniques are discussed. Marine fish typically show low levels of population genetic differentiation, and in such species the use of large sample sizes and, preferably, multiple types of markers are desirable to resolve stock structure issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarado Bremer, J. R., B. Stequert, N. W. Robertson & B. Ely, 1998. Genetic evidence for inter-oceanic subdivision of bigeye tuna (Thunnus obesus Lowe) populations. Mar. Biol. 132: 547–557.

    Google Scholar 

  • Bardakci, F. & D. O. F. Skibinski, 1994. Application of the RAPD technique in Tilapia fish-species and subspecies identification. Heredity 73: 117–123.

    Google Scholar 

  • Bentzen, P., C. T. Taggart, D. E. Ruzzante & D. Cook, 1996. Microsatellite polymorphism and the population structure of Atlantic cod (Gadus morhua) in the northwest Atlantic. Can. J. Fish. aquat. Sci. 53: 2706–2721.

    Google Scholar 

  • Bucklin, A. & L. Kann, 1991. Mitochondrial DNA variation of copepods: markers of species identity and population differentiation in Calanus. Biol. Bull. 181: 357.

    Google Scholar 

  • Callejas, C. & M. D. Ochando, 1998. Identification of Spanish barbel species using the RAPD technique. J. Fish Biol. 53: 208–215.

    Google Scholar 

  • Carr, S. M. & H. D. Marshall, 1991a. Detection of intraspecific DNA sequence variation in the mitochondrial cytochrome b gene of Atlantic cod (Gadus morhua) by the polymerase chain reaction. Can. J. Fish. aquat. Sci. 48: 48–52.

    Google Scholar 

  • Carr, S.M. & H. D. Marshall, 1991b. A direct approach to the measurement of genetic variation in fish populations: applications of the polymerase chain reaction to studies of Atlantic cod, Gadus morhua. J. Fish Biol. 39 (Suppl. A): 101–107.

    Google Scholar 

  • Carvalho, G. R. & L. Hauser, 1994. Molecular genetics and the stock concept in fisheries. Rev. Fish Biol. Fish. 4: 326–350.

    Google Scholar 

  • Chow, S., 1994. Identification of billfish species using mitochondrial cytochrome b gene fragment amplified by polymerase chain reaction. Collect. Vol. Sci. Pap. ICCAT 42: 549–556.

    Google Scholar 

  • Chow, S., M. E. Clarke & P. J. Walsh, 1993. PCR-RFLP analysis on thirteen western Atlantic snappers (subfamily Lutjaninae): a simple method for species and stock identification. Fish. Bull. U.S.A. 91: 619–627.

    Google Scholar 

  • Chow, S. & H. Ushiama, 1995. Global population structure of albacore (Thunnus alalunga) inferred by RFLP analysis of the mitochondrial ATPase gene. Mar. Biol. 123: 39–45.

    Google Scholar 

  • Cipriano, F. & S. R. Palumbi, 1999. Genetic tracking of a protected whale. Nature 397: 307–308.

    Google Scholar 

  • Dahle, G., 1991. Cod, Gadus morhua L., populations identified by mitochondrial DNA. J. Fish Biol. 38: 295–303.

    Google Scholar 

  • Daley, R. K., P. R. Last, G. K. Yearsley & R. D. Ward, 1997. South east fishery quota species: an identification guide. CSIRO Division of Marine Research, Hobart, Australia.

    Google Scholar 

  • Deriso R. & T. Quinn (eds), 1998. Improving Fish Stock Assessments. National Academy Press, Washington, D.C.

    Google Scholar 

  • De Ligny, W., 1969. Serological and biochemical studies in fish populations. Oceanogr. mar. Biol. ann. Rev. 7: 411–513.

    Google Scholar 

  • De Salle, R. & V. J. Birstein, 1996. PCR identification of black caviar. Nature 381: 197–198.

    Google Scholar 

  • Dinesh, K. R., T. M. Lim, K. L. Chua, W. K. Chan & V. P. E. Phang, 1993. RAPD analysis: an efficient method of DNA fingerprinting in fishes. Zool. Sci. 10: 849–854.

    Google Scholar 

  • Department of Primary Industries and Energy, 1995. Marketing Names for Fish and Seafood in Australia. Department of Primary Industries and Energy, Canberra, Australia.

    Google Scholar 

  • Estoup, A. & B. Angers, 1998. Microsatellites and minisatellites for molecular ecology, theoretical and empirical considerations. In Carvalho, G. R. (ed.), Advances in Molecular Ecology. IOS Press, Amsterdam: 55–86.

    Google Scholar 

  • Evans, B. S., R.W. G. White & R. D. Ward, 1998. Genetic identification of asteroid larvae from Tasmania, Australia, by PCR-RFLP. Mol. Ecol. 7: 1077–1082.

    Google Scholar 

  • FAO, 1993. Review of the state of world marine fishery resources.FAO Fisheries Technical Paper No. 335. FAO, Rome.

    Google Scholar 

  • FAO, 1998. FAO Yearbook 1996. Fishery Statistics: Catches and Landings, Vol. 82. FAO, Rome.

    Google Scholar 

  • Frydenberg, O., D. Moller, G. Naevdal & K. Sick, 1965. Haemoglobin polymorphism in Norwegian cod populations. Hereditas 53: 257–271.

    Google Scholar 

  • Galvin, P., T. Sadusky, D. McGregor & T. Cross, 1995. Population genetics of Atlantic cod using amplified single locus minisatellite VNTR analysis. J. Fish Biol. 47 (Suppl. A): 200–208.

    Google Scholar 

  • Graves, J. E., 1998. Molecular insights into the population structures of cosmopolitan marine fishes. J. Heredity 89: 427–437.

    Google Scholar 

  • Grewe, P. M. & J. Hampton, 1998. An assessment of bigeye (Thunnus obesus) population structure in the Pacific Ocean, based on mitochondrial DNA and DNA microsatellite analysis. CSIRO Marine Research, Hobart, Australia.

    Google Scholar 

  • Hare, J. A., R. K. Cowen, J. P. Zehr, F. Juanes & K. H. Day, 1994. Biological and oceanographic insights from larval labrid (Pisces, Labridae) identification using mtDNA sequences. Mar. Biol. 118: 17–24.

    Google Scholar 

  • Hare, J. A., R. K. Cowen, J. P. Zehr, F. Juanes & K. H. Day, 1998. A correction to biological and oceanographic insights from larval labrid (Pisces, Labridae) identification using mtDNA sequences. Mar. Biol. 130: 589–592.

    Google Scholar 

  • Harris, H., 1966. Enzyme polymorphisms in man. Proc. r. Soc. Lond. 164B: 298–310.

    Google Scholar 

  • Harvey, W. D., 1990. Electrophoretic techniques in forensics and law enforcement. In Whitmore, D. H. (ed.), Electrophoretic and Isoelectric Focusing Techniques in Fisheries Management. CRC Press, Boca Raton, Florida: 314–321.

    Google Scholar 

  • Hauser, L. & R. D. Ward, 1998. Population identification in pelagic fish: the limits of molecular markers. In Carvalho, G. R. (ed.), Advances in Molecular Ecology. IOS Press, Amsterdam: 191–224.

    Google Scholar 

  • Hu, Y. P., R. A. Lutz & R. C. Vrijenhoek, 1992. Electrophoretic identification and genetic analysis of bivalve larvae. Mar. Biol. 113: 227–230.

    Google Scholar 

  • Huang, T.-S., M. R. Marshall & C.-I. Wei, 1995. Identification of red snapper (Lutjanus campechanus) using electrophoretic techniques. J. Food Sci. 60: 279–283.

    Google Scholar 

  • Ihssen, P. E., H. E. Booke, J.M. Casselman, J. M. McGlade, N. R.Payne & F. M. Utter, 1981. Stock identification: materials and methods. Can. J. Fish. aquat. Sci. 38: 1838–1855.

    Google Scholar 

  • Innes, B. H., P. M. Grewe & R. D. Ward, 1998. PCR-based genetic identification of marlin and other billfish. Aust. J. mar. Freshwat. Res. 49: 383–388.

    Google Scholar 

  • Lavery, S. & J. B. Shaklee, 1991. Genetic evidence for separation of two sharks, Carcharhinus limbatus and C. tilstoni, from northern Australia. Mar. Biol. 108: 1–4.

    Google Scholar 

  • Lewontin, R. C. & J. L. Hubby, 1966. A molecular approach to the study of genic variation in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54: 595–609.

    Google Scholar 

  • Mork, J., P. Solemdal & G. Sundnes, 1983. Identification of marine fish eggs: a biochemical genetics approach. Can. J. Fish. aquat. Sci. 40: 361–369.

    Google Scholar 

  • Mork, J. P., N. Ryman, G. Ståhl, F. Utter & G. Sundnes, 1985. Genetic variation in Atlantic cod (Gadus morhua) throughout its range. Can. J. Fish. aquat. Sci. 42: 1580–1587.

    Google Scholar 

  • Olson, R. R., J. A. Runstadler & T. D. Kocher, 1991. Whose larvae? Nature 351: 357–358.

    Google Scholar 

  • Park, L. K. & P. Moran, 1994. Developments in molecular genetic techniques in fisheries. Rev. Fish Biol. Fish. 4: 272–299.

    Google Scholar 

  • Pauly, D., V. Christensen, J. Dalsgaard, R. Froese & F. Torres, Jr., 1998. Fishing down marine food webs. Science 279: 860–863.

    Google Scholar 

  • Pepperell, J. & P. Grewe, 1998. A field guide to the Indo-Pacific bill-fishes. CSIRO Division of Marine Research, Hobart, Australia.

    Google Scholar 

  • Pogson, G. H., K. A. Mesa & R. G. Boutilier, 1995. Genetic population structure and gene flow in the Atlantic cod Gadus morhua: a comparison of allozyme and nuclear RFLP loci. Genetics 139: 375–385.

    Google Scholar 

  • Quinteiro, J., C. G. Sotelo, H. Rehbein, S. E. Pryde, I. Medina, R. I. Peréz-Martin, M. Rey-Méndez & I. M. Mackie, 1998. Use of mtDNA direct polymerase chain reaction (PCR) sequencing and PCR-restriction fragment length polymorphism methodologies in species identification of canned tuna. J. agric. Food Chem. 46: 1662–1669.

    Google Scholar 

  • Ruzzante, D. E., C. T. Taggart & D. Cook, 1996b. Spatial and temporal variation in the genetic composition of a larval cod (Gadus morhua) aggregation: cohort contribution and genetic stability. Can. J. Fish. aquat. Sci. 53: 2695–2705.

    Google Scholar 

  • Ruzzante, D. E., C. T. Taggart & D. Cook, 1998. A nuclear DNA basis for shelf-and bank-scale population structure in northwest Atlantic cod (Gadus morhua): Labrador to Georges Bank. Mol. Ecol. 7: 1663–1680.

    Google Scholar 

  • Ruzzante, D. E., C. T. Taggart, D. Cook & S. V. Goddard, 1996a. Genetic differentiation between inshore and offshore Atlantic cod (Gadus morhua) off Newfoundland: microsatellite DNA variation and antifreeze level. Can. J. Fish. aquat. Sci. 53: 634–645.

    Google Scholar 

  • Ruzzante, D. E., C. T. Taggart, D. Cook & S. V. Goddard, 1997. Genetic differentiation between inshore and offshore Atlantic cod (Gadus morhua L.) off Newfoundland: a test and evidence of temporal stability. Can. J. Fish. aquat. Sci. 54: 2700–2708.

    Google Scholar 

  • Scoles, D. R. & J. E. Graves, 1993. Genetic analysis of the population structure of yellowfin tuna, Thunnus albacares, from the Pacific Ocean. Fish. Bull. U.S.A. 91: 690–698.

    Google Scholar 

  • Seeb, L. W. & A. W. Kendall, Jr., 1991. Allozyme polymorphisms permit the identification of larval and juvenile rockfishes of the genus Sebastes. Envir. Biol. Fishes 30: 191–201.

    Google Scholar 

  • Seeb, L. W., J. E. Seeb & J. J. Polovina, 1990. Genetic variation in highly exploited spiny lobster Panulirus marginatus populations from the Hawaiian archipelago. Fish. Bull. U.S.A. 88: 713–718.

    Google Scholar 

  • Shaklee, J. B. & P. Bentzen, 1998. Genetic identification of stocks of marine fish and shellfish. Bull. mar. Sci. 62: 589–621.

    Google Scholar 

  • Shaklee, J. B. & C. P. Keenan, 1986. A practical laboratory guide to the techniques and methodology of electrophoresis and its application to fish fillet identification. CSIRO Mar. Lab. Report 177, CSIRO, Hobart, Australia.

    Google Scholar 

  • Sick, K., 1961. Haemoglobin polymorphism in fishes. Nature 192: 894–896.

    Google Scholar 

  • Sidell, B. D., R. G. Otto & D. A. Powers, 1978. A biochemical method for distinction of striped bass and white perch larvaeCopeia 1978: 340–343.

  • Silberman, J. D. & P. J. Walsh, 1992. Species identification of spiny lobster phyllosome larvae via ribosomal DNA analysis. Mol. mar. Biol. Biotech. 1: 195–205.

    Google Scholar 

  • Smith, P. J. & J. Crossland, 1977. Identification of larvae of snapper Chrysophrys auratus Forster by electrophoretic separation of tissue enzymes. New Zealand J. mar. Freshwat. Res. 11: 795–798.

    Google Scholar 

  • Smith, P. J., A. Jamieson & C. A. Bishop, 1989. Mitochondrial DNA in the Atlantic cod, Gadus morhua: lack of genetic divergence between eastern and western populations. J. Fish Biol. 34: 369–373.

    Google Scholar 

  • Smith, P. J., R. H. Mattlin, M. A. Roeleveld & T. Okutani, 1987. Arrow squids of the genus Nototodarus in New Zealand waters: systematics, biology and fisheries. New Zealand J. mar. Freshwat. Res. 21: 315–326.

    Google Scholar 

  • Smith, P. J. & D. A. Robertson, 1981. Genetic evidence for two species of sprat (Sprattus) in New Zealand waters. Mar. Biol. 62: 227–233.

    Google Scholar 

  • Sweijd, N. A., R. C. K. Bowie, A. L. Lopata, A. M. Marinaki, E. H. Harley & P. A. Cook, 1998. A PCR technique for forensic species level identification of abalone tissues. J. Shellfish Res. 17: 889–896.

    Google Scholar 

  • Waples, R. S., 1998. Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J. Heredity 98: 438–450.

    Google Scholar 

  • Ward, R. D., N. G. Elliott, P. M. Grewe & A. J. Smolenski, 1994b. Allozyme and mitochondrial DNA variation in yellowfin tuna (Thunnus albacares) from the Pacific Ocean. Mar. Biol. 118: 531–539.

    Google Scholar 

  • Ward, R. D., N. G. Elliott & P. M. Grewe, 1995. Allozyme and mitochondrial DNA separation of Pacific northern bluefin tuna, Thunnus thynnus orientalis (Temminck and Schlegel), from southern bluefin tuna, Thunnus maccoyii (Castelnau). Aust. J. mar. Freshwat. Res. 46: 921–930.

    Google Scholar 

  • Ward, R. D., N. G. Elliott, B. H. Innes, A. J. Smolenski & P. M. Grewe, 1997. Global population structure of yellowfin tuna (Thunnus albacares) inferred from allozyme and mitochondrial DNA variation. Fish. Bull. U.S.A. 95: 566–575.

    Google Scholar 

  • Ward, R. D. & P. M. Grewe, 1994. Appraisal of molecular genetic techniques in fisheries. Rev. Fish Biol. Fish. 4: 300–325.

    Google Scholar 

  • Ward, R. D., D. O. F. Skibinski & M. Woodwark, 1992. Protein heterozygosity, protein structure and taxonomic differentiation. Evol. Biol. 26: 73–159.

    Google Scholar 

  • Ward, R. D., M. Woodwark & D. O. F. Skibinski, 1994a. A comparison of genetic diversity levels in marine, freshwater and anadromous fish. J. Fish Biol. 44: 213–232.

    Google Scholar 

  • Yearsley, G. K., P. R. Last & R. D. Ward, 1999. Australian seafood handbook: domestic species. CSIRO Division of Marine Research, CSIRO, Hobart, Australia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, R.D. Genetics in fisheries management. Hydrobiologia 420, 191–201 (2000). https://doi.org/10.1023/A:1003928327503

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003928327503

Navigation