Skip to main content
Log in

Mechanisms of salinity adaptations in marine molluscs

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A review on salinity adaptation of marine molluscsbased on mainly Russian scientific literature ispresented. The existence of two relativelyindependent systems of adaptation to extreme(resistance level) and moderate (tolerance level)changes of environmental salinity was shown. Theresistance of molluscs is based mainly on an impededwater-salt exchange with the external medium due tomantle cavity hermetization. The tolerance ofmolluscs is determined by cellular mechanisms ofadaptation. Reversible changes of protein and RNAsynthesis, alteration of the pattern of multiplemolecular forms of different enzymes, and theregulation of ionic content and cell volume wereshown to be of importance for the above mentionedmechanisms. The efficiency of resistance andtolerance adaptations to salinity changes may varyin different species and in different colourphenotypes of the same species (intrapopulationalpolymorphism). Parasites (trematodes) may suppressthe resistance of the mollusc-host to extremesalinity changes without effecting the host'scapacity for adaptive changes in salinitytolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aliakrinskaya, I. O., 1972. Biochemical adaptations of aquatic molluscs to inhabiting air. Zool. Zhurn. 51: 1630–1636 [in Russian].

    Google Scholar 

  • Beliaev, G. M., 1951. Osmotic pressure of cavity fluid of aquatic invertebrates in waters of different salinity. Trudy Vsesouz. Gidrobiol. ob-va. 3: 92–139 [in Russian].

    Google Scholar 

  • Beliaev, G. M., 1957. Physiological peculiarities of representatives of the same species in water of different salinity. Trudy Vsesoyuzn. Gidrobiol. ob-va. 8: 321–353 [in Russian].

    Google Scholar 

  • Berger, V. J., 1976. On adaptations of some littoral White Sea molluscs to salinity changes. In Khlebovich, V. V. & V. J. Berger (eds), Solenostnye adaptatsii vodnykh organizmov. Zooligical Institute, Leningrad: 69–111 [in Russian].

    Google Scholar 

  • Berger, V. J., 1986. Adaptation of marine molluscs to environmental salinity changes. Nauka, Leningrad: 214 pp [in Russian].

    Google Scholar 

  • Berger, V. J., 1989. On the adaptation of molluscs to increased salinity. Biologiia moria. 2: 30–35 [in Russian].

    Google Scholar 

  • Berger, V. J. & A. D. Kharazova, 1971. Investigation of substantial changes in protein synthesis during adaptation to lowered salinity of the environment in someWhite Sea snails. Tsitologia 13: 1299–1303 [in Russian].

    Google Scholar 

  • Berger, V. J. & A. D. Kharazova, 1977. The influence of low salinity on RNA passage from the nucleus to the cytoplasm of ctenidial cells of the snail Littorina littorea. Tsitologia 19: 233–35 [in Russian].

    Google Scholar 

  • Berger, V. J., B. N. Letunov, G. V. Vshevtsov & O. L. Saranchova, 1985. Morpho-functional and ecological aspects of byssus formation in mussels Mytilus edulisL. In Berger, V. J. & L. N. Seravin (eds), Ekologija obrastanija v Belom more. Zoological Institute, Leningrad: 67–76 [in Russian].

    Google Scholar 

  • Berger, V. J. & V. V. Lukanin, 1972. Inhibition of the capacity to salinity acclimation in Aurelia aurita(L.) larvae by actinomycin D. Dokl. Akad. nauk SSSR. 202: 205–207 [in Russian].

    Google Scholar 

  • Berger, V. J., V. V. Lukanin & V. V. Khlebovich, 1970. Effect of actinomycin D on the capacity to salinity acclimation in larvae of the jellyfish Aurelia auritaand the mollusc Epheria vincta. Zhurn. Evolyuts. Biochim. Fiziol. 6: 636–638 [in Russian].

    Google Scholar 

  • Berger, V. J., A. D. Naumov & A. I. Babkov, 1995. Quantity and diversity dependence of marine benthos on environmental salinity. Biologiia moria. 21: 45–50 [in Russian].

    Google Scholar 

  • Berger, V. J., A. N. Pachomov & A. G. Mukhlenov, 1975. Investigation of esterase and lactatedehydrogenase isozymes spectra during adaptation of molluscs Littorina littoreato environmental salinity changes. Zhurn. Obsch. Biologii. 36: 579–584 [in Russian].

    Google Scholar 

  • Berger, V. J. & S. O. Sergievskii, 1986. Differences in adaptive reactions on salinity changes of individuals of Littorina obtusata with different shell colour. Biologia moria. 1: 36–41 [in Russian].

    Google Scholar 

  • Berger, V. J. & S. O. Sergievskii, 1990. Evolution of salinity adaptations in marine molluscs. Zhurn. Evolyuts. Biochim. Fiziol. 26: 462–468 [in Russian].

    Google Scholar 

  • Bishop, S. H., D. E. Greenwalt, M. A. Kapper, K. T. Paynter & L. L. Ellis, 1994. Metabolic regulation of proline, glycine and alanine accumulation as intracellular osmolytes in ribbed mussel gill tissue. J. exp. Zool. 268: 151–161.

    Google Scholar 

  • Black, R. E. & L. Bloom, 1984. Heat-shock proteins in Aurelia (Cnidaria, Scyphozoa). J. exp. Zool. 230: 303–307.

    Google Scholar 

  • Davenport, J., 1979. Is Mytilus edulisa short term osmoregulator? Comp. Biochem. Physiol. 64: 91–95.

    Google Scholar 

  • Davenport, J., 1981. The opening response ofmussels (Mytilus edulis L.) exposed to rising sea-water concentrations. J. mar. biol. Ass. UK 61: 667–668.

    Google Scholar 

  • Ferraris, J. D. & A. Garcia-Perez, 1996. Osmoregulatory gene expression and implications for evolutionary studies: Strategies in identification of the osmotic response element (ORE). In Ferraris, J. D. & R. Stephen (eds), Molecular Zoology: Advances, Strategies and Protocols. John Wiley & Sons, New York: 313–326.

    Google Scholar 

  • Florkin, M. & E. Schoffeniels, 1969. Molecular Approaches to Ecology. John Wiley & Sons, New York, 203 pp.

    Google Scholar 

  • Freel, R. W., 1978. Patterns of water solute regulation in the muscle fibres of osmoconforming marine decapod crustaceans. J. exp. Biol. 72: 107–126.

    Google Scholar 

  • Freeman, R. F. & F. H. Rigler, 1957. The responses of Scrobicularia plana(Da Costa) to osmotic pressure changes. J. mar. biol. Ass. UK 36: 553–567.

    Google Scholar 

  • Fretter, V. & A. Graham, 1962. British prosobranch molluscs. Proc. r. Soc., London. 144: 3–755.

    Google Scholar 

  • Gilles, R., 1972. Osmoregulations of three molluscs: Acanthochitona discrepans(Brown), Glycymeris glycymeris(L.) and Mytilus edulis(L.). Biol. Bull. 142: 25–35.

    Google Scholar 

  • Gilles, R., 1979. Mechanism of osmoregulation in animals. Wiley Interscience, New York, 667 pp.

    Google Scholar 

  • Ginetsinskiy, A. G., 1963. Physiological mechanisms of water–salt balance. Nauka, Moscow-Leningrad, 276 pp [in Russian].

    Google Scholar 

  • Golikov, A. N. & O. G. Kusakin, 1978. Shell gastropod molluscs from the intertidal zone of USSR seas. Nauka, Leningrad, 256 pp [in Russian].

    Google Scholar 

  • Gurina, V. I., 1975. Investigation of RNA and protein synthesis in epithelial tissues of molluscs during adaptation to environmental salinity changes. Tsitologia 17: 298–303 [in Russian].

    Google Scholar 

  • Hedgpeth, J. W., 1967. Ecological aspects of Laguna Madre, hypersaline estuary. In Lauff, G. H. (ed.), Estuaries. A.A.A.S., Washington: 408–419.

    Google Scholar 

  • Jensen, K. T., G. Latama & K. N. Mouritsen, 1996. The effect of larval trematode on the survival rates of two species of mud snails (Hydrobiidae) experimentally exposed to dessication, freezing and anoxia. Helgolander wiss. Meeresunters. 50: 327–335.

    Google Scholar 

  • Kharazova, A. D., 1987. The role of plastic metabolism in adaptations of hydrobionts to abiotic factors of the environment. Trudy zoologicheskogo instituta AN SSSR. 160: 59–84 [in Russian].

    Google Scholar 

  • Kharazova, A. D., 1994. Protein and RNA metabolism in the tissues of marine molluscs at changes of environmental salinity. Izvestia Akad. Nauk. 4: 561–565 [in Russian].

    Google Scholar 

  • Kharazova, A. D. & V. J. Berger, 1974. Changes of RNA synthesis in tissues of the mollusc Littorina littorea(L.) at decreasing water salinity. Tsitologia 16: 241–243 [in Russian].

    Google Scholar 

  • Kharazova, A. D., V. J. Berger, V. I. Fateeva, L. M. Yaroslavtseva & P. V. Yaroslavtsev, 1981. Influence of salinity on the dynamics of protein synthesis in isolated gills of Crenomytilus grayana. Biologiia moria 6: 55–60 [in Russian].

    Google Scholar 

  • Kharazova, A. D., V. J. Berger, V. I. Fateeva, L. M. Yaroslavtseva & P. V. Yaroslavtsev, 1983. On the correlation of organismic and cellular reactions at adaptation of mussels to environmental salinity changes. Dokl. AN SSSR. 269: 245–247 [in Russian].

    Google Scholar 

  • Kharazova, A. D., N. V. Nechaeva & V. I. Fateeva, 1989. Circahouralian rhythms of protein synthesis in the tissues of some invertebrates. Tsitologia 31: 601–614 [in Russian].

    Google Scholar 

  • Kharazova, A. D. & V. V. Rostova, 1976. Investigation of protein and RNA synthesis changes in tissues of White Sea mollusc Coryphella rufibranchialisat lowered salinity. In Khlebovich, V. V. & V. J. Berger (eds), Solenostnye adaptatsii vodnykh organizmov. Zoological Institute, Leningrad: 142–155 [in Russian].

    Google Scholar 

  • Khlebovich, V. V., 1962. Pecularities of aquatic fauna composition in dependence of environmental salinity. Zhurn. Obsch. Biologii. 23: 90–97 [in Russian].

    Google Scholar 

  • Khlebovich, V. V., 1974. Critical salinity of biological processes. Nauka, Leningrad, 230 pp [in Russian].

    Google Scholar 

  • Khlebovich, V. V. & A. P. Kondratenkov, 1973. Stepwise acclimation–a method for estimating the potential euryhalinity of the gastropod Hydrobia ulvae.Mar. Biol. 18: 6–8.

    Google Scholar 

  • Klekowski, R. Z., 1963. The influence of low salinity and dessication on the survival, osmoregulation and water balance of Littorina littorea. Polsk. arch. hydrobiol. 11: 241–250.

    Google Scholar 

  • Korolkova, E. D. & A. D. Kharazova, 1994. EM investigation of mussel gill epithelium at a lowering of salinity. Tsitologia 36: 69–75 [in Russian].

    Google Scholar 

  • Kreps, E. M., 1929. Investigations of gas exchange of Balanus crenatus at different salt concentrations of the environment. Trudy Murman. Biol. Stantsii. 3: 1–32 [in Russian].

    Google Scholar 

  • Kroeger, H., 1967. Hormones, ion balance and gene activity in dipteran chromosomes. Mem. Soc. Endocrinol. 15: 55–56.

    Google Scholar 

  • Krogh, A., 1939. Osmotic regulation in aquatic animals. University Press, Cambridge, 242 pp.

    Google Scholar 

  • Kuzmina, O. Y., 1982. Role of intracellular inorganic ions in the adaptation of some poikilosmotic animals to environmental salinity changes. Ph.D. dissertation. Zoological Institute, Leningrad, 172 pp [in Russian].

    Google Scholar 

  • Lavrova, E. A. & Y. V. Natochin, 1981. Inhibition of chloride permeability and sodium transport in frog skin by merkuzal and etakrinic acid. Biofizika 26: 651–656 [in Russian].

    Google Scholar 

  • Lezzi, M., 1970. Differential gene activation in isolated chromosomes. Int. Revue Cytol. 29: 127–168.

    Google Scholar 

  • Lukanin, V. V., 1976. Study of adaptive reactions of White Sea scyphomedusae Aurelia aurita(L.) on environmental salinity changes. In Khlebovich, V. V. & V. J. Berger (eds), Solenostnye adaptatsii vodnykh organizmov. Zoological Institute, Leningrad: 28–58 [in Russian].

    Google Scholar 

  • Lukanin, V. V. & V. V. Khlebovich, 1979. Effect of inhibitors of protein synthesis on metamorphosis and adaptive capacity of scyphomedusae Aurelia aurita(L.) during water freshening. Ontogenez. 10: 80–83 [ in Russian].

    Google Scholar 

  • Lvova, T. G. & E. E. Kulakovsky, 1979. Investigation on protein and RNA synthesis in the tissues of the polychaete Micronephthys minutaat changes of environmental salinity. Tsitologia 21: 1356–1360.

    Google Scholar 

  • Marek, M. & H. Kroeger, 1974. Influence of Na/Mg on the pattern of esterases in explanted Galleria melonellamidgut. Comp. Biochem. Physiol. 47B: 503–506.

    Google Scholar 

  • Marek, M. & H. Kroeger, 1976. Influence on Na, K,Mg and cooling on proteosynthesis in hemocytes of Galleria melonella. Comp. Biochem. Physiol. 53B: 45–47.

    Google Scholar 

  • Natochin, Y. V., 1966. Reaction of mussels on separate changes of osmotic concentration and salinity in the environment. Zhurn. Obsch. Biologii. 27: 473–479 [in Russian].

    Google Scholar 

  • Natochin, Y. V., 1976. The kidney: regulation of ionic balance. Nauka, Leningrad, 286 pp [in Russian].

    Google Scholar 

  • Natochin, Y. V. & V. J. Berger, 1979. Ionic content of molluscs cells–evolutionary and ecological aspects. Zhurn. Evolyuts. Biokhim. Fiziol. 15: 295–302 [in Russian].

    Google Scholar 

  • Natochin, Y. V., V. J. Berger, V. V. Khlebovich, E. A. Lavrova & O. Y. Mikhailova, 1979. The participation of electrolytes in adaptation mechanisms of intertidal mollusc cells to altered salinity. Comp. Biochem. Physiol. 63A.: 115–119.

    Google Scholar 

  • Oliver, L. T. & M. Brand, 1953. The influence of lack of oxygen on Schistosoma mansonicercariae and infected Austrolorbus glabratus. Exp. Parasitol. 12: 339–366.

    Google Scholar 

  • Pierce, S. K., 1982. Invertebrate cell volume control mechanism: a coordinated use of intracellular amino acid and inorganic ions as osmotic solute. Biol. Bull. 169: 405–419.

    Google Scholar 

  • Pierce, S. K, 1994. Osmolyte permeability in molluscan red cells is regulated by Ca2+ and membrane protein phosphorylation: the present perspective. J. exp. Zool. 268: 166–170.

    Google Scholar 

  • Potts, W. T. W., 1958. The inorganic and amino acid composition of some lamellibranch muscles. J. exp. Biol. 53: 749–764.

    Google Scholar 

  • Potts, W. T. W. & G. Parry, 1964. Osmotic and ionic regulations in animals. Pergamon Press, Oxford, 412 pp.

    Google Scholar 

  • Savvateev, V. B., 1952. On the physiology of adaptations in Balanus to salinity oscillations. Zool. Zhurn. 31: 801–805 [in Russian].

    Google Scholar 

  • Schlieper, C., 1960. Genotypische und phaenotypische Temperatur und Salzgehalts Adaptationen bei merinen Bodenvertebraten der Nord und Ostsee. Kieler Meeresforsch. 16: 180–185.

    Google Scholar 

  • Sergievskii, S. O., 1983. Shell-colour polymorphism: paramethric systems. In Mollyuski, sistematika, ekologiia i zakonomernosti raspredeleniia. Leningrad: 52–54 [in Russian].

  • Sergievskii, S. O. & V. J. Berger, 1983. Population-physiological analysis of shell-colour polymorphism of Littorina obtusata (Gastropoda: Prosobranchia). In Likharev, I. M. (ed.), Mollyuski, sistematika, ekologiia i zakonomernosti raspredeleniia. Nauka, Leningrad: 55–56 [in Russian].

    Google Scholar 

  • Sergievskii, S. O. & V. J. Berger, 1984. Physiological differences of principal shell-colour phenotypes of the gastropod mollusc Littorina obtusata. Biol. moria. 2: 36–44 [in Russian].

    Google Scholar 

  • Todd, M. E., 1964. Osmotic balance in Littorina littorea, L. litoralis and L. saxatilis(Litorinidae). Physiol. Zool. 37: 33–44.

    Google Scholar 

  • Vasilieva, V. F., A. G. Ginetsinskiy, M. G. Zaks & M. M. Sokolova, 1960. Two types of adaptation of poikilosmotic marine animals to hypodynamic environment. In Voprosy tsitologii i obscheiy fiziologii. Publishing house of USSR Academy of Sciences, Moscow-Leningrad: 50–60 [in Russian].

    Google Scholar 

  • Vernberg, W. B. & F. J. Vernberg, 1963. Influence of parasitism on thermal resistance of the mud-flat snail, Nassarius obsoleta. Soc. exp. Parasitol. 14: 330–332.

    Google Scholar 

  • Zhirmunskiy, A. V., 1962. The reaction of ciliary epithelia cells of mussels and sea anemones to reduced salinity. Zhurn. obsch. biologii. 23: 119–126 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, V.J., Kharazova, A.D. Mechanisms of salinity adaptations in marine molluscs. Hydrobiologia 355, 115–126 (1997). https://doi.org/10.1023/A:1003023322263

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003023322263

Navigation