Skip to main content
Log in

Coexistence of Multiple Periodic and Chaotic Regimes in Biochemical Oscillations with Phase Shifts

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

The numerical study of a glycolytic model formed by a system of three delay differential equations reveals a multiplicity of stable coexisting states: birhythmicity, trirhythmicity, hard excitation and quasiperiodic with chaotic regimes. For different initial functions in the phase space one may observe the coexistence of two different quasiperiodic motions, the existence of a stable steady state with a stable torus, and the existence of a strange attractor with different stable regimes (chaos with torus, chaos with bursting motion, and chaos with different periodic regimes). For a single range of the control parameter values our system may exhibit different bifurcation diagrams: in one case a Feigenbaum route to chaos coexists with a finite number of successive periodic bifurcations, in other conditions it is possible to observe the coexistence of two quasiperiodicity routes to chaos. These studies were obtained both at constant input flux and under forcing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Alhara, G. and G. Matsumoto (1982). Temporally coherent organization and instabilities in squid glant axon. J. theor. Biol. 95: 697-720.

    Google Scholar 

  • Alamgir, M. and I.R. Epstein (1983). Birhythmicity and compound oscillations in coupled chemical oscillators: chlorite-bromate-iodide system J. Am. Chem. Soc. 105: 2500-2501.

    Google Scholar 

  • Bartrons, R., E. Schaftingen, S. Vissers, and H. Hers (1982). The stimulation of yeast phosphofructokinase by fructose 2,6-bisphosfate. Febs Letters 143: 137-140.

    Google Scholar 

  • Baulch, D.L., J.F. Griffiths, A.J. Papin and A.F. Sykes (1988). Stationary-state and oscillatory combustion of hydrogen in a well-stirred flow reactor. Combust. Flame. 73: 163-85.

    Google Scholar 

  • Betz, A. and B. Chance (1965). Phase relationship of glycolytic intermediates in yeast cells and with oscillatory metabolic control. Arch. Biochem. Biophys. 109: 585-594.

    Google Scholar 

  • Citri, O. and I.R. Epstein (1988). Mechanistic study of a coupled chemical oscillator: The bromate-chlorite-iodide reaction. J. Phys. Chem. 92: 1865-1871.

    Google Scholar 

  • Decroly, O. and A. Goldbeter (1982). Birhythmicity, chaos and other patterns of temporal self-organization in a multiply regulated biochemical system. Proc. Natl. Acad. Sci. U.S.A. 79: 6917-6921.

    Google Scholar 

  • Decroly, O. and A. Goldbeter (1984). Multiple periodic regimes and final state sensitivity in a biochemical system. Phys. Lett. 105A: 259-262.

    Google Scholar 

  • De la Fuente, M.I., L. Martínez and J. Veguillas (1995). Dynamic Behaviour in Glycolytic Oscillations with Phase Shifts. Biosystems 35: 1-13.

    Google Scholar 

  • De la Fuente, M.I., L. Martínez and J. Veguillas (1996a). Intermittency Route to Chaos in a Biochemical System. Biosystems 39: 87-92.

    Google Scholar 

  • De la Fuente, M.I., L. Martínez, J. Veguillas and J.M. Aguirregabiria (1996b). Quasiperiodicity Route to Chaos in a Biochemical System. Biophys J. 71: 2375-2379.

    Google Scholar 

  • Frenkel, R. (1968). Control of reduced diphosphopyridine nucleotide oscillations in beef heart extracts. Arch. Biochem. Biophys. 125: 157-165.

    Google Scholar 

  • Gadsby, D.C. and A.L. Wit (1981). Electrophysiologic characteristics of cardiac cell and the genesis of cardiac arrhythmias. Cardiac Pharmacology. New York, Academic Press.

    Google Scholar 

  • Gilmour, R.F.Jr., J.J. Heger, E.N. Prystowsky and D.P. Zipes (1983). Cellular Electrophysiologic Abnormalities of Diseased Human Ventricular Myocardium. Am. J. Cardiol. 51: 137-144.

    Google Scholar 

  • Goldbeter, A. and F. Moran (1988). Dynamics of a biochemical system with multiple oscillatory domains as a clue for multiple modes of neuronal oscillations. Eur. Biophys. J. 15: 277-287.

    Google Scholar 

  • Goldbeter, A. and G. Nikolis (1976). An allosteric enzyme model with positive teedback applied to glycolytic oscillation. Progress in Theoretical Biology. New York, Academic Press.

    Google Scholar 

  • Goldbeter, A. (1990). Rythmes et Chaos dans les Systmes Biochmiques et Cellulaires. Paris, Masson.

    Google Scholar 

  • Guevara, M.R., L. Glass and A. Shrier (1981). Phase-locking, period-doubling bifurcations and irregular dynamics in periodically stimulated cardiac cells. Science 214: 1350-1353.

    Google Scholar 

  • Hess, B. and A. Boiteux (1968). Control of glycolysis. In: Regulatory Functions of Biological Membranes. Amsterdam, Elsevier.

    Google Scholar 

  • Hess, B., A. Boiteux and J. Kruger (1969). Cooperation of glycolytic enzymes. Adv. Enzyme Regul. 7: 149-167.

    Google Scholar 

  • Hess, B., D. Kuschmitz and M. Markus (1984). In: J. Ricard and A. Cornish-Bowden, eds., Dynamics of Biochemical Systems. New York, Plenum Publ. Co.

    Google Scholar 

  • Hess, B. M. Markus, S.C. Müler and T. Plesser (1990). From homogeneity towards the anatomy of a chemical spiral. In: P. Gray, G. Nicolis, F. Baras, P. Borckmans and S.K. Scott, eds., Spatial Inhomogeneties and Transient Behaviour in Chemical Kinetics. Manchester University Press.

  • Kevrekedis, I.G., L.D. Schmidt and R. Aris (1986). The stirred tank forced. Chem. Eng. Sci. 41: 1549-1560.

    Google Scholar 

  • Koppel, N. and G.B. Ermentrout (1986). Subcellular oscillations and bursting. Math. Biosci. 78: 265-291.

    Google Scholar 

  • Li Y. and A. Goldbeter (1989). Oscillatory isozymes as the simplest model for coupled biochemical oscillators. J. Theor. Biol. 138: 149-174.

    Google Scholar 

  • Li, Yue-Xian and A. Goldbeter (1989). Oscillatory isozimes as the simplest model for coupled biochemical oscillators. J. theor. Biol. 138: 149-174.

    Google Scholar 

  • Llinas, R. R. (1988). The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system functions. Science 242: 1654-1664.

    Google Scholar 

  • Maselko, J. and H.L. Swinney (1986). Complex periodic oscillations and Farey arithmetic in the Belousov-Zhabotinskii reaction. J. Chem. Phys. 85: 6430-6441.

    Google Scholar 

  • Mankin, J.C. and J.L. Hudson (1984). Oscillatory and chaotic behaviour of a forced exothermic chemical reaction. Chem. Eng. Sci. 39: 1807-1814.

    Google Scholar 

  • Markus, M. and B. Hess (1984). Transition between oscillatory modes in a glycolytic model system. Proc. Natl. Acad. Sci. USA. 81: 4394-4398.

    Google Scholar 

  • Markus, M., D. Kuschmitz and B. Hess (1984b). Chaotic dynamics in yeast glycolisys under periodic substrate input flux. FEBS. 172: 235-238.

    Google Scholar 

  • Minorsky, N. (1962). Nonlinear Oscillations. Princeton, van Nostrand.

    Google Scholar 

  • Pye, E. K. (1969). Biochemical mechanisms underlying the metabolic oscillations in yeast. Can. J. Bot. 47: 271-285.

    Google Scholar 

  • Rinzel, J. and S.Y. Lee (1986). On different mechanisms for membrane potential bursting. In: H.G. Othmer, ed., Nonlinear Oscillations in Biology and Chemistry. Berlin, Springer.

    Google Scholar 

  • Rose, R.M. and J.L. Hindmarsh (1985). A model of thalamic neuron. Proc. R. Soc. B225: 161-193.

    Google Scholar 

  • Scott, S. (1994). Chemical Chaos. Oxford, Clarendon Press.

    Google Scholar 

  • Takesue, S. and K. Kaneko (1984). Prog. Theor. Phys. 71: 35.

    Google Scholar 

  • Tracqui, P., A.M. Perault-Staub, G. Milhaud and J.F. Staub (1987). Theoretical study of a two-dimensional autocatalytic model for calcium dynamics at the extracellular fluid-bone interface. Bull. Math. Biol. 49: 597-613.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Fuente, I., Martinez, L., Aguirregabiria, J. et al. Coexistence of Multiple Periodic and Chaotic Regimes in Biochemical Oscillations with Phase Shifts. Acta Biotheor 46, 37–51 (1998). https://doi.org/10.1023/A:1000899820111

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000899820111

Navigation