Skip to main content
Log in

On the Determination of the Neutral Drag Coefficient in the Convective Boundary Layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Based on the idea that free convection can be considered as a particular case of forced convection, where the gusts driven by the large-scale eddies are scaled with the Deardorff convective velocity scale, a new formulation for the neutral drag coefficient, CDn, in the convective boundary layer (CBL) is derived. It is shown that (i) a concept of CDn can still be used under strongly unstable conditions including a pure free-convection regime even when no logarithmic portion in the velocity profile exists; (ii) gustiness corrections must be applied for rational calculations of CDn; and (iii) the stratification Ψ function used in the derivation of CDn should satisfy the theoretical free-convection limit. The new formulation is compared with the traditional relationship for CDn, and data collected over the sea (during the Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) and the San Clemente Ocean Probing Experiment (SCOPE)) and over land (during the BOREX-95 experiment) are used to illustrate the difference between the new and traditional formulations. Compared to the new approach, the traditional formulation strongly overestimates CDn and zo in the CBL for mean wind speed less than about 2 m s-1. The new approach also clarifies several contradictory results from earlier works. Some aspects related to an alternate definition of the neutral drag coefficient and the wind speed and the stress averaging procedure are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beljaars, A. C. M.: 1995, ‘The Parameterization of Surface Fluxes in Large-Scale Models under Free Convection’, Quart. J. Roy. Meteorol. Soc. 121, 225-270.

    Google Scholar 

  • Busch, N. E., Christensen, O., Kristensen, L., Lading, L., and Larsen, S. E.: 1980, ‘Cups, Vanes, Propellers, and Laser Anemometers’. In F. Dobson, L. Hasse and R. Davis (eds.), Air-Sea Interaction: Instruments and Methods. Plenum Press, New York, NY, pp. 11-46.

    Google Scholar 

  • Businger, J. A.: 1973, ‘A Note on Free Convection’, Boundary-Layer Meteorol. 4, 323-326.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 181-189.

    Google Scholar 

  • Carl, M. D., Tarbell, T. C., and Panofsky, H. A.: 1973, ‘Profiles of Wind and Temperature from Towers over Homogeneous Terrain’, J. Atmos. Sci. 30, 788-794.

    Google Scholar 

  • Charnock, H.: 1955, ‘Wind Stress on a Water Surface’, Quart. J. Roy. Meteorol. Soc. 82, 639-640.

    Google Scholar 

  • Deardorff, J. W.: 1970, ‘Convective Velocity and Temperature Scales for the Unstable Planetary Boundary Layer and for Rayleigh Convection’, J. Atmos. Sci. 27, 1211-1213.

    Google Scholar 

  • Delage, Y. and Girard, C.: 1992, ‘Stability Functions Correct at the Free Convection Limit and Consistent for Both the Surface and Ekman Layers’, Boundary-Layer Meteorol. 58, 19-31.

    Google Scholar 

  • Donelan, M. A., Dobson, F. W., Smith, S. D., and Anderson, R. J.: 1993, ‘On the Dependence of Sea Surface Roughness on Wave Development’, J. Phys. Oceanogr. 23, 2143-2149.

    Google Scholar 

  • Fairall, C. W. and Grachev, A. A.: 1996, ‘On the Sea-Surface Roughness Length under Free Convection Conditions’, Proc. 8th AMS Conference on Air-Sea Interaction and Conference on the Global Ocean-Atmosphere-Land System (GOALS), 28 January-2 February 1996, Atlanta, Georgia, pp. J134-J138.

  • Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S.: 1996a, ‘Air-Sea Flux Parameterization in TOGA COARE’, J. Geophys. Res. 101(C2), 3747-3764.

    Google Scholar 

  • Fairall, C. W., Grachev, A. A., Bedard, A. J., and Nishiyama, R. T.: 1996b, ‘Wind, Wave, Stress, and Surface Roughness Relationships from Turbulence Measurements made on R/P FLIPin the SCOPE Experiment’, NOAA Technical Memorandum, ERL ETL268, Boulder, Colorado, April 1996, 37 pp. (Available from the National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161.)

  • Fernando, H. J. S., Chen, R. R., and Boyer, D. L.: 1991, ‘Effects of Rotation on Convective Turbulence’, J. Fluid Mech. 228, 513-547.

    Google Scholar 

  • Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, 316 pp.

  • Geernaert, G. L.: 1987, ‘On the Importance of the Drag Coefficient in Air-Sea Interactions’, Dyn. Atmos. Oceans 11, 19-38.

    Google Scholar 

  • Geernaert, G. L. and Katsaros, K. B.: 1986, ‘Incorporation of Stratification Effects on the Oceanic Roughness Length in the Derivation of the Neutral Drag Coefficient’, J. Phys. Oceanogr. 16, 1580-1584.

    Google Scholar 

  • Geernaert, G. L., Davidson, K. L., Larsen, S. E., and Mikkelsen, T.: 1988, ‘Wind Stress Measurements during the Tower Ocean Wave and Radar Experiment’, J. Geophys. Res. 93(C11), 13913-13923.

    Google Scholar 

  • Godfrey, J. S. and Beljaars, A. C. M.: 1991, ‘On the Turbulent Fluxes of Buoyancy, Heat, and Moisture at the Air-Sea Interface at Low Wind Speeds’, J. Geophys. Res. 96, 22043-22048.

    Google Scholar 

  • Grachev, A. A.: 1994, ‘Free Convection Frequency Spectra of Atmospheric Turbulence over the Sea’, BoundaryLayer Meteorol. 69, 27-42.

    Google Scholar 

  • Grachev, A. A., Fairall, C. W., and Zilitinkevich, S. S.: 1997, ‘Surface-Layer Scaling for the Convection-Induced Stress Regime’, Boundary-Layer Meteorol. 83, 423-439.

    Google Scholar 

  • Hsu, S. A.: 1974, ‘On the Log-Linear Wind Profile and the Relationship between Shear and Stability Characteristics over the Sea’, Boundary-Layer Meteorol. 6, 509-514.

    Google Scholar 

  • Hunt, J. C. R.: 1984, ‘Turbulent Structure in Thermal Convection and Shear-Free Boundary Layers’, J. Fluid Mech. 138, 161-184.

    Google Scholar 

  • Kader, B. A. and Yaglom, A. M.: 1990, ‘Mean Fields and Fluctuation Moments in Unstably Stratified Turbulent Boundary Layers’, J. Fluid Mech. 212, 637-662.

    Google Scholar 

  • Kaimal, J. C. and Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flows. Their Structure and Measurements.Oxford University Press, New York/Oxford, 289 pp.

    Google Scholar 

  • Lenschow, D. H. (ed.): 1986, Probing the Atmospheric Boundary Layer, Amer. Meteorol. Soc., Boston, MA, 269 pp.

    Google Scholar 

  • Mahrt, L. and Sun, J.: 1995, ‘The Subgrid Velocity Scale in the Bulk Aerodynamic Relationship for Spatially Averaged Scalar Fluxes’, Mon. Wea. Rev. 123, 3032-3041.

    Google Scholar 

  • Mikkelsen, T. Jørgensen, H. E., Løfstrøm, P., and Lyck, E.: 1996, ‘Borex’95: Atmospheric Dispersion Experiment on Concentration Fluctuations’, Data Report Risø-R-927(EN).

  • Mitsuta, Y. and Tsukamoto, O.: 1978, ‘Drag Coefficients in Light Wind’, Bulletin of the Disaster Prevention Research Institute, Kyoto University, 28(255), Pt. 2, 25-32.

    Google Scholar 

  • Monin, A. S. and Yaglom, A. M.: 1971, Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 1, MIT Press, Cambridge, Massachusetts, 769 pp.

    Google Scholar 

  • Nelkin, M. and Tabor, M.: 1990, ‘Time Correlations and Random Sweeping in Isotropic Turbulence’, Phys. Fluids A 2, 81-83.

    Google Scholar 

  • Panofsky, H. A.: 1963, ‘Determination of Stress from Wind and Temperature Measurements’, Quart. J. Roy. Meteorol. Soc. 89, 85-94.

    Google Scholar 

  • Paulson, C. A.: 1970, ‘The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer’, J. Appl. Meteorol. 9, 857-861.

    Google Scholar 

  • Sanada, T. and Shanmugasundaram, V.: 1992, ‘Random Sweeping Effect in Isotropic Numerical Turbulence’, Phys. Fluids A 4, 1245-1250.

    Google Scholar 

  • Schumann, U.: 1988, ‘Minimum Friction Velocity and Heat Transfer in the Rough Surface Layer of a Convective Boundary Layer’, Boundary-Layer Meteorol. 44, 311-326.

    Google Scholar 

  • Smith, S. D.: 1988, ‘Coefficients for Sea Surface Wind Stress, Heat Flux, and Wind Profiles as a Function of Wind Speed and Temperature’, J. Geophys. Res. 93(C12), 15467-15472.

    Google Scholar 

  • Stull, R. B.: 1994, ‘A Convective Transport Theory for Surface Fluxes’, J. Atmos. Sci. 51, 3-22.

    Google Scholar 

  • Sykes, R. I., Henn, D. S., and Lewellen, W. S.: 1993, ‘Surface-Layer Description under Free-Convection Conditions’, Quart. J. Roy. Meteorol. Soc. 119, 409-421.

    Google Scholar 

  • Tennekes, H.: 1975, ‘Eulerian and Lagrangian Time Microscales in Isotropic Turbulence’, J. Fluid Mech. 67, 561-567.

    Google Scholar 

  • Vugts, H. F. and Cannemeijer, F.: 1981, ‘Measurements of Drag Coefficients and Roughness Length at a Sea-Beach Interface’, J. Appl. Meteorol. 20, 335-339.

    Google Scholar 

  • Webb, E. K.: 1982, ‘On the Correction of Flux Measurements for Effects of Heat and Water Vapour Transfer’, Boundary-Layer Meteorol. 23, 251-254.

    Google Scholar 

  • Webb, E. K., Pearman, G. I., and Leuning, R.: 1980, ‘Correction of Flux Measurements for Density Effects due to Heat and Water Vapour Transfer’, Quart. J. Roy. Meteorol. Soc. 106, 85-100.

    Google Scholar 

  • Wu, Jin: 1994, ‘The Sea Surface is Aerodynamically Rough Even under Light Winds’, Boundary-Layer Meteorol. 69, 149-158.

    Google Scholar 

  • Wyngaard, J. C.: 1981, ‘Cup, Propeller-Vane and Sonic Anemometers in Turbulence Research’, Ann. Rev. Fluid Mech. 13, 399-423.

    Google Scholar 

  • Zilitinkevich, S. S.: 1995, ‘Non-Local Turbulent Transport: Pollution Dispersion Aspects of Coherent Structure of Convective Flow’, in H. Power, N. Moussiopoulos, and C. A. Brebbia (eds.), Air Polution Theory and Simulation, Air Polution III, Vol. 1, Computational Mechanics Publication, Southampton/Boston, pp. 53-60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grachev, A., Fairall, C. & Larsen, S. On the Determination of the Neutral Drag Coefficient in the Convective Boundary Layer. Boundary-Layer Meteorology 86, 257–278 (1998). https://doi.org/10.1023/A:1000617300732

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000617300732

Navigation