Skip to main content
Log in

Eukaryotic molecular biodiversity: systematic approaches for the assessment of symbiotic associations

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

‘Biodiversity’ addresses the wealth of species that constitute the biosphere. Notwithstanding that they have been regarded as mental constructs in the past, species are really existing entities that form and disappear in the course of evolution. Molecular techniques allow to trace the dynamics of speciation and to determine the relatedness of species and the genetic diversity within populations. These techniques also permit to recognize the incredible diversity of protists: their importance for the global conversion of biomass and energy had been greatly underestimated until recently. Because it is not possible to ‘count’ all species living on earth, a variety of approaches have been used to estimate global biodiversity. Such estimations are extrapolations of historical trends or of punctual assessments of the biodiversity of selected ecosystems. Therefore, new concepts are required to calculate global biodiversity. Systematic approaches that evaluate small, complex biotopes exhaustively, or that calculate the number of symbionts or parasites on the basis of their potential hosts have already led to a substantial revision of earlier estimations. Here, an evaluation of potential animal hosts for methanogenic archaea and intestinal protists is described that reveals the importance of host taxonomy for the assessments. If molecular techniques can confirm the presumed specificity of symbiotic and parasitic associations a substantial revision of the current assumptions about the biodiversity of such organisms will be necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amann RI, Ludwig W & Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143–169

    Google Scholar 

  • Ashburner M (1989) Drosophila. A laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Begun DJ & Aquadro CF (1993) African and North American populations of Drosophila melanogaster are very different at the DNA level. Nature 365: 548–550

    Google Scholar 

  • Bermudes D & Joiner KA (1993) The role of parasites in generating evolutionary novelty. Parasitol. Today 9: 458–463

    Google Scholar 

  • Bijnen FGC, Harren FJM, Hackstein JHP & Reuss J (1996) Intracavity CO laser photoacoustic trace gas detection; cyclic CH4, H2O, and CO2 emission by cockroaches and scarab beetles. Applied Optics 35/27: 5357–5368

    Google Scholar 

  • Bisby FA (1995) Characterization of biodiversity. In: Heywood H (Ed) Global biodiversity assessment (pp 25–106). Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Blair D, Campos A, Cummings MP & Laclette JP (1996) Evolutionary biology of parasitic platyhelminths: The role of molecular phylogenetics. Parasitiol. Today 12: 66–71

    Google Scholar 

  • Boone DR, Whitman WB & Rouvière P (1993) Diversity and taxonomy of methanogens. In: Ferry JG (Ed) Methanogenesis, Ecology, Physiology, Biochemistry and Genetics (pp 1–80). Chapman and Hall, New York, London

    Google Scholar 

  • Breznak JA (1982) Intestinal microbiota of termites and other xylophagous insects. Ann. Rev. Microbiol. 36: 323–343

    Google Scholar 

  • Brul S & Stumm CK (1994) Symbionts and organelles in anaerobic protozoa and fungi. Trends Ecol. Evol. 9: 319–324

    Google Scholar 

  • Caccone A & Powell JR (1989) DNA divergence among hominoids. Evolution 43: 925–942

    Google Scholar 

  • Catzeflis FM, Hänni C, Sourrouille P & Douzery E (1995) Re: Molecular systematics of hystricognath rodents: The contribution of sciurognath mitochondrial 12 S rRNA sequences. Molecular Phylogenetics and Evolution

  • Cavalier-Smith T (1987) The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Ann. N.Y. Acad. Sci. 503: 55–71

    Google Scholar 

  • — (1993) The kingdom protozoa and its 18 phyla. Microbiol. Rev. 57: 953–994

    Google Scholar 

  • Cazemier AE, Hackstein JHP, Op den Camp HJM, Rosenberg J & Van der Drift C (1996) Bacteria in the intestinal tract of arthropods. Microbial Ecol. 33: 189–197

    Google Scholar 

  • Clarke RTJ & Bauchop T (Eds) (1977) Microbial Ecology of the Gut. Academic Press, New York

    Google Scholar 

  • Cleveland LR (1926) Symbiosis among animals with special reference to termites and their intestinal flagellates. Quart. Rev. Biol. 1: 51–60

    Google Scholar 

  • Coombs GH & Hackstein JHP (1995) Anaerobic protists and anaerobic ecosystems. (pp 90–101) In: Brugerolle G & Mignot J-P (Eds) Protistological actualities. Proceedings of the Second European Congress of Protistology, Clermont-Ferrand, France, 1995, pp 90–101

  • Cooper A, Mourer-Chauvire C, Chambers GK, Von Haeseler A, Wilson A & Pääbo S (1992) Independent origins of New Zealand moas and kiwis. Proc. Natl. Acad. Sci. USA 89: 8741–8744

    Google Scholar 

  • Coyne J (1996) Speciation in action. Science 272: 700–701

    Google Scholar 

  • Cruden DL & Markovetz AJ (1987) Microbial ecology of the cockroach gut. Ann. Rev. Microbiol. 41: 617–643

    Google Scholar 

  • Davis AW, Roote J, Morley T, Sawamura K, Herrmann S & Ashburner M (1996) Rescue of hybrid sterility in crosses between D. melanogaster and D. simulans. Nature 380: 157–159

    Google Scholar 

  • DeSalle R & Grimaldi DA (1991) Morphological and molecular systematics of the Drosophilidae. Ann. Rev. Ecol. Syst. 22: 447–475

    Google Scholar 

  • Doddema HJ & Vogels DG (1978) Improved identification of methanogenic bacteria by fluorescence microscopy. Appl. Env. Microbiol. 36: 752–754

    Google Scholar 

  • Eberhard WG (1985) Sexual selection and animal genitalia. Harvard University Press, Cambridge, MA, USA

    Google Scholar 

  • Ebert D & Herre EA (1996) The evolution of parasitic diseases. Parasitol. Today 12: 96–101

    Google Scholar 

  • Eisler K & Fleury A (1995) Morphogenesis and evolution in ciliates. In: Brugerolle G & Mignot J-P (Eds) Prostistological Actualities (pp 102–135) Proceedings of the Second European Congress of Protistology, Clermont-Ferrand, France

  • Embley TM & Finlay BJ (1993) Systematic and morphological diversity of endosymbiotic methanogens in anaerobic ciliates. Antonie van Leeuwenhoek 64: 261–271

    Google Scholar 

  • — (1994) The use of small subunit rRNA sequences to unravel the relationship between anaerobic ciliats and their methanogen endosymbionts. Microbiology 140: 225–235

    Google Scholar 

  • Embley TM, Hirt RP & Williams AG (1994) Biodiversity at the molecular level: the domains, kingdoms and phyla of life. Phil. Trans. R. Soc. London B 345: 21–33

    Google Scholar 

  • Embley TM, Finlay BJ, Dyal PL, Hirt RP, Wilkinson M & Williams AG (1995) Multiple origins of anaerobic ciliates with hydrogenosomes within the radiation of aerobic ciliates. Proc. R. Soc Lond. B, 262: 87–93

    Google Scholar 

  • Erwin TL (1982) Tropical forests: their richness in coleoptera and other arthropod species. Coleopt. Bull. 36: 74–82

    Google Scholar 

  • — (1983) Beetles and other insects of tropical forest canopies at Manaus, Brazil, sampled by insecticidal fogging. In: Sutton S, Whitmore TC & Chadwick AC (Eds) Tropical Rain Forests: Ecology and Management (pp 59–75) Blackwell, Oxford, UK

    Google Scholar 

  • Esteban G, Guhl BE, Clarke KJ, Embley TM & Finlay BJ (1993) Cyclidium porcatum n.sp.: a free-living anaerobic scuticociliate containing a stable complex of hydrogenosomes, eubacteria and archaeobacteria. Eur. J. Protistol. 29: 262–270

    Google Scholar 

  • Ferry JG (Ed) (1993) Methanogenesis, Ecology, Physiology, Biochemistry and Genetics. Chapman and Hall, New York, London

    Google Scholar 

  • Finlay BJ, Corliss JO, Esteban G & Fenchel T (1996) Biodiversity at the microbial level: the number of free-living ciliates in the biosphere. Quart. Rev. Biol. 71: 221–237

    Google Scholar 

  • Gibbons A (1996) On the many origins of species. Science 273: 1496–1499

    Google Scholar 

  • Gould SJ (1980) The Panda's thumb. W.W. Norton & Co., Inc.

  • Grzimek B (1979) Grzimeks Tierleben. Enzyklopädie des Tierreichs. DTV, München, Germany

    Google Scholar 

  • Hackstein JHP & Stumm CK (1994) Methane production in terrestrial arthropods. Proc. Natl. Acad. Sci. USA 91: 5441–5445

    Google Scholar 

  • Hackstein JHP, Van Alen TA, Op den Camp H, Smits A & Mariman E (1995) Intestinal methanogenesis in primates — a genetic and evolutionary approach. Dtsch. tierärztl. Wschr. 102/4: 152–154

    Google Scholar 

  • Hackstein JHP & Van Alen TA (1996) Fecal methanogens and vertebrate. Evolution 50: 559–572

    Google Scholar 

  • Hackstein JHP, Langer P & Rosenberg J (1996) Genetic and evolutionary constraints for the symbiosis between animals and methanogenic bacteria. Env. Monit. Assessm. 42: 59–76

    Google Scholar 

  • Hackstein JHP, Voncken FGJ, Vogels GD, Rosenberg J & Mackenstedt U (1997a) Hydrogenosomes and plastid-like organelles in amoebomastigotes, chytrids, and apicomplexan parasites. In: Coombs G & Warren A (Eds) Evolutionary Relationships among Protozoa. The Systematics Association, Special Volume. Chapman and Hall, London, in press

    Google Scholar 

  • Hackstein JHP, Cazemier AE & Van Alen TA (1997b) Methanogenic bacteria and anaerobic protists in cockroaches: a systematic approach. Submitted

  • Hackstein JHP & Langer P (1997) Intestinal methanogens and vertebrate evolution: symbiotic archaea are key organisms in the differentiation of the digestive tract. Endocytobiology VI, in press

  • Hawksworth DL (1991) Biological diversity in fungi, bacteria and viruses. Biology Education 8: 57–62

    Google Scholar 

  • — (1993) The tropical fungal biota: census, pertinence, and prognosis. In: Isaac S, Frankland JC, Watling R & Whalley AJS (Eds) Aspects of Tropical Mycology (pp 265–293) Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Hawksworth DL & Kalin-Arroyo MT (1995) Magnitude and distribution of biodiversity. In: Heywood VH (Ed) Global biodiversity assessment (pp 111–191) Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Hennig W (1950) Grundzüge einer Theorie der phylogenetischen Systematik. Deutscher Zentralverlag, Berlin

    Google Scholar 

  • — (1981) Insect Phylogeny. John Wiley & Sons, Chichester

    Google Scholar 

  • Hey J & Kliman RM (1993) Population genetics and phylogenetics of DNA sequence variation at multiple loci within the Drosophila melanogaster species complex. Mol. Biol. Evol. 10: 804–822

    Google Scholar 

  • Heywood VH (Ed) (1995) Global biodiversity assessment. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Hoyte HMD (1961a) The protozoa occurring in the hind-but of cockroaches. I. Responses to changes in environment. Parasitology 51: 415–436

    Google Scholar 

  • — (1961b) II. Morphology of Nyctotherus ovalis. Parasitology 51: 437–463

    Google Scholar 

  • — (1961c) III. Factors affecting the dispersion of Nyctotherus ovalis. Parasitology 51: 465–495

    Google Scholar 

  • Hungate RE (1966) The rumen and its microbes. Academic Press, New York and London

    Google Scholar 

  • Kambhampati S (1995) A phylogeny of cockroaches and related insects based on DNA sequence of mitochondrial ribosomal genes. Proc. Natl. Acad. Sci. USA 92: 2017–2020

    Google Scholar 

  • Langer P (1991) Evolution of the digestive tract in mammals. Verh. Dtsch. Zool. Ges. 84: 169–193

    Google Scholar 

  • — (1994) Food and digestion of Cenozoic mammals in Europe. In: Chivers D & Langer P (Eds) The Digestive System in Mammals: Food, Form, and Function (pp 9–24) Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Langer P & Snipes RL (1991) Adaptations of gut structure to function in herbivores. In: Tsuda T, Sasaki Y & Kawashima R (Eds) Physiological Aspects of Digestion and Metabolism in Ruminants (pp 349–384) Academic Press, San Diego

    Google Scholar 

  • Lively CM (1996) Host-parasite coevolution and sex. BioScience 46: 107–114

    Google Scholar 

  • May RM (1988) How many species are there on earth? Science 241: 1441–1449

    Google Scholar 

  • — (1990) How many species? Phil. Trans. R. Soc. London B 330: 293–304

    Google Scholar 

  • — (1992) How many species inhabit the earth? Scientific Am. 267, October 1992: 18–24

  • — (1994) Conceptual aspects of the quantification of the extent of biological diversity. Phil. Trans. R. Soc. London B 345: 13–20

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge, MA, USA

    Google Scholar 

  • Miller TL & Wolin MJ (1986) Methanogens in human and animal intestinal tracts. Syst. Appl. Env. Microbiol. 7: 223–229

    Google Scholar 

  • Morell V (1996) Starting species with third parties and sex wars. Science 273: 1499–1502

    Google Scholar 

  • Müller M (1993) The hydrogenosome. J. Gen. Microbiol. 139: 2879–2889

    Google Scholar 

  • Muyzer G, De Waal EC & Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16 S rDNA. Appl. Env. Microbiol. 59: 695–700

    Google Scholar 

  • Muyzer G & Ramsing NB (1996) Molecular methods to study the organization of microbial communities. Water Sci. Technol. 32: 1–9

    Google Scholar 

  • Nurminsky DI, Moriyama EN, Lozovskaya ER & Hartl DL (1996) Molecular phylogeny and genome evolution in the Drosophila virilis species group: duplications of the alcohol dehydrogenase gene. Mol. Biol. Evol. 13: 132–149

    Google Scholar 

  • O'Donnell AG, Goodfellow M & Hawksworth DL (1994) Theoretical and practical aspects of the quantification of biodiversity among microorganisms. Phil. Trans. R. Soc. London B 345: 65–73

    Google Scholar 

  • Ohkuma M & Kudo T (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulotermes speratus. Appl. Env. Microbiol. 62: 461–468

    Google Scholar 

  • Paster BJ, Dewhirst FE, Cooke SM, Fussing V, Poulsen LK & Breznak JA (1996) Phylogeny of not-yet-cultured spirochetes from termite guts. Appl. Env. Microbiol. 62: 347–352

    Google Scholar 

  • Philippe H & Adoutte A (1995) How reliable is our view of eukaryotic phylogeny? In: Brugerolle G & Mignot J-P (Eds) Protistological actualities (pp 17–33) Proceedings of the Second European Congress of Protistology, Clermont-Ferrand, France, 1995

  • Raskin L, Stromley JM, Rittmann BE & Stahl DA (1994) Group-specific 16 S rRNA hybridization probes to describe natural communities of methanogens. Appl. Env. Microbiol. 60: 1232–1240

    Google Scholar 

  • Russo CAM, Takezaki N & Nei M (1995) Molecular phylogeny and divergence times of Drosophilid species. Mol. Biol. Evol. 12: 391–404

    Google Scholar 

  • Savage DC (1972) Associations and physiological interactions of indigenous microorganisms and gastrointestinal epithelia. Amer. J. Clin. Nutrition 25: 1372–1379

    Google Scholar 

  • — (1977) Microbial ecology of the gastrointestinal tract. Ann. Rev. Microbiol. 31: 107–133

    Google Scholar 

  • Schlegel M (1994) Molecular phylogeny of eukaryotes. Trends Ecol. Evol. 9: 330–335

    Google Scholar 

  • Schlötterer C, Hauser M-T, Von Haeseler A & Tautz D (1994) Comparative evolutionary analysis of rDNA ITS regions in Drosophila. Mol. Biol. Evol. 11: 513–522

    Google Scholar 

  • Secord D & Kareiva P (1996) Perils and pitfalls in the host specificity paradigm. BioScience 46: 448–453

    Google Scholar 

  • Sieman E, Tilman D & Haarstad J (1996) Insect species diversity, abundance and body size relationships. Nature 380: 704–706

    Google Scholar 

  • Smith FA & Smith SE (1996) Mutualism and parasitism: Diversity in function and structure in the ‘arbuscular’ (VA) mycorrhizal symbiosis. Adv. Bot. Res. 22: 1–43

    Google Scholar 

  • Sogin M (1991) Early evolution and the origin of eukaryotes. Curr. Opin. Genet. Dev. 1: 457–463

    Google Scholar 

  • Stork NE (1988) Insect diversity: facts, fiction and speculation. Biol. J. Linn. Soc. 35: 321–337

    Google Scholar 

  • Teske A, Wawer C, Muyzer G & Ramsing NB (1996) Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl. Env. Microbiol. 62: 1405–1415

    Google Scholar 

  • Thompson RCA & Lymbery AJ (1996) Genetic variability in parasites and host-parasite interactions. Parasitology 112(S): S7–S22

    Google Scholar 

  • Vandamme P, Pot B, Gillis M, De Vos P, Kersters K & Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60: 407–438

    Google Scholar 

  • Wakelin D & Walliker D (Ed) (1996) Genetics of host and parasite — implications for immunity, epidemiology and evolution. Parasitology 112(S): S1–S5

  • Wawer C & Muyzer G (1995) Genetic diversity of Desulfovibrio spp. in environmental samples analyzed by denaturing gradient gel electrophoresis of [NiFe] hydrogenase gene fragments. Appl. Env. Microbiol. 61: 2203–2210

    Google Scholar 

  • Wheatherall DJ (1996) Host genetics and infectious disease. Parasitology 112(S): S23–S29

    Google Scholar 

  • Woese CR, Kandler O & Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eukarya. Proc. Natl. Acad. Sci. USA 87: 4576–4579

    Google Scholar 

  • Wu C-I (1996) Now blows the east wind. Nature 380: 105–106

    Google Scholar 

  • Wu C-I & Palopoli MF (1994) Genetics of postmating reproductive isolation in animals. Ann. Rev. Genet. 27: 283–308

    Google Scholar 

  • Wu C-I, Hollocher H, Begun D, Aquadro CF, Xu Y & Wu M-L (1995) Sexual isolation in Drosophila melanogaster: A possible case of incipient speciation. Proc. Natl. Acad. Sci. USA 92: 2519–2523

    Google Scholar 

  • Wu C-I & Johnson NA (1996) Endless forms, several powers. Nature 382: 298–299

    Google Scholar 

  • Wu C-I, Johnson NA & Palopoli MF (1996) Haldane's rule and its legacy: why are there so many sterile males? Trends Ecol. Evol. 11: 281–284

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hackstein, J. Eukaryotic molecular biodiversity: systematic approaches for the assessment of symbiotic associations. Antonie Van Leeuwenhoek 72, 63–76 (1997). https://doi.org/10.1023/A:1000321631884

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000321631884

Keywords

Navigation