Skip to main content
Log in

Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Predation is a major mortality factor of planktonic bacteria and an important shaping force for the phenotypic and taxonomic structure of bacterial communities. In this paper we: (1) summarise current knowledge on bacterial phenotypic properties which affect their vulnerability towards grazers, and (2) review experimental evidence demonstrating that this phenotypic heterogeneity results in shifts of bacterial community composition during enhanced protist grazing pressure. Size-structured interactions are especially important in planktonic systems and bacterial cell size influences the mortality rate and the type of grazer to which bacteria are most susceptible. When protists are the major bacterivores, both very small and large bacterial cells gain some size refuge. Recent studies have revealed that also various non-morphological traits such as motility, physicochemical surface characters and toxicity affect bacterial vulnerability and protist feeding success. These properties are effective at different stages during the feeding process of interception feeding flagellates (encounter, capture, ingestion, digestion). Grazing-resistant bacteria in natural communities can account for a substantial portion of the total bacterial biomass at least in more productive aquatic systems. In field and laboratory experiments it has been demonstrated that increased protozoan grazing results in shifts in the phenotypic and genotypic composition of the bacterial assemblage. The importance of this shaping force for the bacterial community structure depends, however, on the overall food web structure, especially on the composition of the metazooplankton. Whereas the structuring impact of bacterial grazers is well documented, relatively little is known about how grazing-mediated changes in bacterial communities influence microbially mediated processes and biogeochemically important transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arndt H (1993) Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates) - a review. Hydrobiologia 255/256: 231–246.

    Article  Google Scholar 

  • Arndt H, Dietrich D, Auer B, Cleven E-J, Gräfenhan T, Weitere M & Mylnikov A (2000) Functional diversity of heterotrophic flagellates in aquatic ecosystems. In: Leadbeater B & Green J (Eds) The Flagellates (pp 240–268). Taylor and Francis, London.

    Google Scholar 

  • Bennett SJ, Sanders RW & Porter KG (1988) Chemosensory responses of heterotrophic and mixotrophic flagellates to potential food sources. Bull. Mar. Sci. 43: 764–771.

    Google Scholar 

  • Bernard L, Courties C, Servais P, Troussellier M, Petit M & Lebaron P (2000) Relationships among bacterial cell size, productivity, and genetic diversity in aquatic environments using cell sorting and flow cytometry. Microb. Ecol. 40: 148–158.

    PubMed  Google Scholar 

  • Bianchi M (1989) Unusual bloom of a star-like prosthecate bacteria and filaments as a consequence of grazing pressure. Microb. Ecol. 17: 137–142.

    Article  Google Scholar 

  • Billen G, Servais P & Becquevort S (1990) Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments: bottom-up or top-down control? Hydrobiologia 207: 37–42.

    Article  Google Scholar 

  • Blackburn N, Fenchel T & Mitchell J (1998) Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282: 2254–2256.

    Article  PubMed  CAS  Google Scholar 

  • Boenigk J & Arndt H (2000a) Comparative studies on the feeding behavior of two heterotrophic nanoflagellates: the filter-feeding choanoflagellate Monosiga ovata and the raptorial-feeding kinetoplastid Rhynchomonas nasuta. Aquat. Microb. Ecol. 22: 243–249.

    Google Scholar 

  • Boenigk J & Arndt H (2000b) Particle handling during interception feeding by four species of heterotrophic nanoflagellates. J. Euk. Microbiol. 47: 350–358.

    Article  PubMed  CAS  Google Scholar 

  • Boenigk J, Matz C, Jürgens K & Arndt H (2001a) Confusing selective feeding with differential digestion in bacterivorous nanoflagellates. J. Euk. Microbiol. 48: 425–432.

    Article  PubMed  CAS  Google Scholar 

  • Boenigk J, Matz C, Jürgens K & Arndt H (2001b) The influence of preculture conditions and food quality on the ingestion and digestion process of three species of heterotrophic nanoflagellates. Microb. Ecol. 42: 168–176.

    PubMed  Google Scholar 

  • Boenigk J, Matz C, Jürgens K & Arndt H (2002) Food concentration dependent regulation of food selectivity of interceptionfeeding bacterivorous nanoflagellates. Aquat. Microb. Ecol. 27: 195–202.

    Google Scholar 

  • Bohannan BJM & Lenski RE (2000) The relative importance of competition and predation varies with productivity in a model community. Am. Nat. 156: 329–340.

    Article  Google Scholar 

  • Boonaert CJP & Rouxhet PG (2000) Surface of lactic acid bacteria: Relationships between chemical composition and physicochemical properties. Appl. Environ. Microbiol. 66: 2548–2554.

    Article  PubMed  CAS  Google Scholar 

  • Brendelberger H (1991) Filter mesh size of cladocerans predicts retention efficiency for bacteria. Limnol. Oceanogr. 36: 884–894.

    Google Scholar 

  • Brown R, Bass H & Coombs J (1975) Carbohydrate binding proteins involved in phagocytosis by Acanthamoeba. Nature 254: 434–435.

    Article  PubMed  CAS  Google Scholar 

  • Choi JW, Sherr BF & Sherr EB (1999) Dead or alive? A large fraction of ETS-inactive marine bacterioplankton cells, as assessed by reduction of CTC, can become ETS-active with incubation and substrate addition. Aquat. Microb. Ecol. 18: 105–115.

    Google Scholar 

  • Christaki U, Dolan JR, Pelegri S & Rassoulzadegan F (1998) Consumption of picoplankton-size particles by marine ciliates: Effects of physiological state of the ciliate and particle quality. Limnol. Oceanogr. 43: 458–464.

    Google Scholar 

  • Christoffersen K (1996) Ecological implications of cyanobacterial toxins in aquatic food webs. Phycologia 35: 42–50.

    Article  Google Scholar 

  • Chrzanowski TH & Šimek K (1990) Prey-size selection by freshwater flagellated protozoa. Limnol. Oceanogr. 35: 1429–1436.

    Google Scholar 

  • Cole JJ (1999) Aquatic microbiology for ecosystem scientists: New and recycled paradigms in ecological microbiology. Ecosystems 2: 215–225.

    Article  Google Scholar 

  • Cotner JB, Gardner WS, Johnson JR, Sada RH, Cavaletto JF & Heath RT (1995) Effects of zebra mussels (Dreissena polymorpha) on bacterioplankton - evidence for both size-selective consumption and growth stimulation. J. Great Lakes Res. 21: 517–528.

    Google Scholar 

  • Cottrell MT & Kirchman DL (2000) Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low-and high-molecular-weight dissolved organic matter. Appl. Environ. Microbiol. 66: 1692–1697.

    Article  PubMed  CAS  Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in oceanic environments: Their role(s) in food webs and marine processes. Oceanogr. Mar. Biol. Annu. Rev. 28: 73–153.

    Google Scholar 

  • Del Giorgio PA, Gasol JM, Vaqué D, Mura P, Agusti S & Duarte CM (1996) Bacterioplankton community structure - protists control net production and the proportion of active bacteria in a coastal marine community. Limnol. Oceanogr. 41: 1169–1179.

    Article  Google Scholar 

  • DeMott WR (1995) Food selection by calanoid copepods in response to between-lake variation in food abundance. Freshwat. Biol. 33: 171–180.

    Article  Google Scholar 

  • Ellwood DC & Tempest DW (1972) Effects of environment on bacterial wall content and composition. Adv. Microb. Phys. 7: 83–117.

    CAS  Google Scholar 

  • Elser JJ & Goldman CR (1991) Zooplankton effects on phytoplankton in lakes of contrasting trophic status. Limnol. Oceanogr. 36: 64–90.

    Google Scholar 

  • Engström-Öst J, Koski M, Schmidt K, Viitasalo M, Jonasdottir S, Kokkonen M, Repka S & Sivonen K (in press) Effects of toxic cyanobacteria on a plankton assemblage: community development during decay of Nodularia spumigena. Mar. Ecol. Prog. Ser.

  • Fenchel T (1980) Relation between particle size selection and clearance in suspension-feeding ciliates. Limnol. Oceanogr. 25: 733–738.

    Google Scholar 

  • Fenchel T (1982a) Ecology of heterotrophic microflagellates. I. Some important forms and their functional morphology. Mar. Ecol. Prog. Ser. 8: 211–223.

    Google Scholar 

  • Fenchel T (1982b) Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar. Ecol. Prog. Ser. 9: 35–41.

    Google Scholar 

  • Fenchel T (1984) Suspended marine bacteria as a food source. In: Fasham MJ (Ed) Flows of Energy and Materials in Marine Ecosystems (pp 301–315). Plenum Press, New York

    Google Scholar 

  • Fenchel T (1986) Protozoan filter feeding. Progr.Protistol. 1: 65–113.

    Google Scholar 

  • Fenchel T (2001) Eppur si muove: many water column bacteria are motile. Aquat. Microb. Ecol. 24: 197–201.

    Google Scholar 

  • Fenchel T & Harrison P (1976) The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus. In: Anderson JM & Macfadyen A (Eds) The Role of Terrestrial and Aquatic Organisms in Decomposition Processes (pp 285–299). Blackwell, Oxford.

    Google Scholar 

  • Flynn KJ, Davidson K & Cunningham A (1996) Prey selection and rejection by a microflagellate: Implications for the study and operation of microbial food webs. J. Exp. Mar. Biol. Ecol. 196: 357–372.

    Article  Google Scholar 

  • Frischer ME, Nierzwicki-Bauer SA, Parsons RH, Vathanodorn K & Waitkus KR (2000) Interactions between zebra mussels (Dreissena polymorpha) and microbial communities. Can. J. Fish. aquat. Sci. 57: 591–599.

    Article  Google Scholar 

  • Fuhrman J (2000) Impact of viruses on bacterial processes. In: Kirchman D (Ed) Microbial Ecology of the Oceans (pp 327–350). Wiley-Liss, New York.

    Google Scholar 

  • Gasol JM, Del Giorgio PA, Massana R & Duarte cm (1995) Active versus inactive bacteria: Size-dependence in a coastal marine plankton community. Mar. Ecol. Prog. Ser. 128: 91–97.

    Google Scholar 

  • Geesey GG (1982) Microbial exopolymers: ecological and economic considerations. ASM News 48: 9–14.

    Google Scholar 

  • Glöckner FO, Fuchs BM & Amann R (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 65: 3721–3726.

    PubMed  Google Scholar 

  • González JM (1996) Efficient size-selective bacterivory by phagotrophic nanoflagellates in aquatic ecosystems. Mar. Biol. 126: 785–789.

    Article  Google Scholar 

  • González JM, Iriberri J, Egea L & Barcina I (1990a) Differential rates of digestion of bacteria by freshwater and marine phagotrophic protozoa. Appl. Environ. Microbiol. 56: 1851–1857.

    PubMed  Google Scholar 

  • González JM, Sherr EB & Sherr BF (1990b) Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. Environ. Microbiol. 56: 583–589.

    PubMed  Google Scholar 

  • González JM, Sherr EB & Sherr BF (1993) Differential feeding by marine flagellates on growing versus starving, and on motile versus nonmotile, bacterial prey. Mar. Ecol. Prog. Ser. 102: 257–267.

    Google Scholar 

  • González JM & Suttle CA (1993) Grazing by marine nanoflagellates on viruses and virus-sized particles: ingestion and digestion. Mar. Ecol. Prog. Ser. 94: 1–10.

    Google Scholar 

  • Grossart HP, Riemann L & Azam F (2001) Bacterial motility in the sea and its ecological implications. Aquat. Microb. Ecol. 25: 247–258.

    Google Scholar 

  • Güde H (1979) Grazing by protozoa as selection factor for activated sludge bacteria. Microb. Ecol. 5: 225–237.

    Article  Google Scholar 

  • Güde H (1982) Interactions between floc-forming and nonflocforming bacterial populations from activated sludge. Curr. Microbiol. 7: 347–350.

    Article  Google Scholar 

  • Güde H (1989) The role of grazing on bacteria in plankton succession. In: Sommer U (Ed) Plankton Ecology. Succession in Plankton Communities (pp 337–364). Springer Verlag, Berlin.

    Google Scholar 

  • Guixa-Boixereu N, Lysnes K & Pedrós-Alió C (1999) Viral lysis and bacterivory during a phytoplankton bloom in a coastal water microcosm. Appl. Environ. Microbiol. 65: 1949–1958.

    PubMed  CAS  Google Scholar 

  • Hahn MW & Höfle MG (2001) Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microb. Ecol. 35: 113–121.

    Article  CAS  Google Scholar 

  • Hahn MW & Höfle MG (1998) Grazing pressure by a bacterivorous flagellate reverses the relative abundance of Comamonas acidovorans Px54 and Vibrio strain Cb5 in chemostat cocultures. Appl. Environ. Microbiol. 64: 1910–1918.

    PubMed  CAS  Google Scholar 

  • Hahn MW & Höfle MG (1999) Flagellate predation on a bacterial model community: Interplay of size-selective grazing, specific bacterial cell size, and bacterial community composition. Appl. Environ. Microbiol. 65: 4863–4872.

    PubMed  CAS  Google Scholar 

  • Hahn MW, Moore ERB & Höfle MG (2000) Role of microcolony formation in the protistan grazing defense of the aquatic bacterium Pseudomonas sp MWH1. Microb. Ecol. 39: 175–185.

    PubMed  Google Scholar 

  • Hahn MW, Moore ERB & Höfle MG (1999) Bacterial filament formation, a defense mechanism against flagellate grazing, is growth rate controlled in bacteria of different phyla. Appl. Environ. Microbiol. 65: 25–35.

    PubMed  CAS  Google Scholar 

  • Hammer A, Grüttner C & Schumann R (1999) The effect of electrostatic charge of food particles on capture efficiency by Oxyrrhis marina Dujardin (dinoflagellate). Protist 150: 375–382.

    Article  PubMed  CAS  Google Scholar 

  • Hammond S, Lambert P & Rycoft A (1984) The Bacterial Cell Surface. Croom Helm, London.

    Google Scholar 

  • Havskum H & Hansen AS (1997) Importance of pigmented and colourless nano-sized protists as grazers on nanoplankton in a phosphate-depleted Norwegian fjord and in enclosures. Aquat. Microb. Ecol. 12: 139–151.

    Google Scholar 

  • Heissenberger A, Leppard GG & Herndl GJ (1996) Relationship between the intracellular integrity and the morphology of the capsular envelope in attached and free-living marine bacteria. Appl. Environ. Microbiol. 62: 4521–4528.

    PubMed  CAS  Google Scholar 

  • Hirsch P & Müller M (1985) Planctomyces limnophilus sp. nov., a stalked and budding bacterium from freshwater. Syst. Appl. Microbiol. 6: 276–280.

    Google Scholar 

  • Holen DA & Boraas ME (1991) The feeding behavior of Spumella sp. as a function of particle size: Implications for bacterial size in pelagic systems. Hydrobiologia 220: 73–88.

    Article  Google Scholar 

  • Horwitz M & Silverstein S (1980) Influence of the Escherichia coli capsule on complement fixation and on phagocytosis and killing by human phagocytes. J. Clin. Invest. 65: 82–94.

    Article  PubMed  CAS  Google Scholar 

  • Hunter R (1993) Introduction to Modern Colloid Science. Oxford University Press, Oxford.

    Google Scholar 

  • Jürgens K (1994) Impact ofDaphnia on planktonic microbial food webs - A review. Mar. Microb. Food Webs 8: 295–324.

    Google Scholar 

  • Jürgens K, Arndt H & Rothhaupt KO (1994) Zooplankton-mediated changes of bacterial community structure. Microb. Ecol. 27: 27–42.

    Article  Google Scholar 

  • Jürgens K & DeMott WR (1995) Behavioral flexibility in prey selection by bacterivorous nanoflagellates. Limnol. Oceanogr. 40: 1503–1507.

    Article  Google Scholar 

  • Jürgens K, Gasol JM & Vaqué D (2000) Bacteria-flagellate coupling in microcosm experiments in the Central Atlantic Ocean. J. Exp. Mar. Biol. Ecol. 245: 127–147.

    Article  Google Scholar 

  • Jürgens K & Güde H (1994) The potential importance of grazingresistant bacteria in planktonic systems. Mar. Ecol. Prog. Ser. 112: 169–188.

    Google Scholar 

  • Jürgens K & Jeppesen E (2000) The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake. J. Plankton Res. 22: 1047–1070.

    Article  Google Scholar 

  • Jürgens K, Pernthaler J, Schalla S & Amann R (1999) Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing. Appl. Environ. Microbiol. 65: 1241–1250.

    PubMed  Google Scholar 

  • Jürgens K & Sala MM (2000) Predation-mediated shifts in size distribution of microbial biomass and activity during detritus decomposition. Oikos 91: 29–40.

    Article  Google Scholar 

  • Jürgens K & Šimek K (2000) Functional response and particle size selection of Halteria cf. grandinella, a common freshwater oligotrichous ciliate. Aquat. Microb. Ecol. 22: 57–68.

    Google Scholar 

  • Jürgens K & Stolpe G (1995) Seasonal dynamics of crustacean zooplankton, heterotrophic nanoflagellates and bacteria in a shallow, eutrophic lake. Freshwat. Biol. 33: 27–38.

    Article  Google Scholar 

  • Jürgens K, Wickham SA, Rothhaupt KO & Santer B (1996) Feeding rates of macro-and microzooplankton on heterotrophic nanoflagellates. Limnol. Oceanogr. 41: 1833–1839.

    Google Scholar 

  • Kaprelyants AS, Gottschal JC & Kell DB (1993) Dormancy in nonsporulating bacteria. FEMS Microbiol. Rev. 104: 271–286.

    Article  CAS  Google Scholar 

  • Kemp PF, Newell SY & Krambeck C (1990) Effects of filter-feeding by the ribbed mussel Geukensia demissa on the water-column microbiota of a Spartina alterniflora saltmarsh. Mar. Ecol. Prog. Ser. 59: 119–132.

    Google Scholar 

  • King CH, Shotts EB, Wooley RE & Porter KG (1988) Survival of coliforms and bacterial pathogens within protozoa during chlorination. Appl. Environ. Microbiol. 54: 3023–3033.

    PubMed  CAS  Google Scholar 

  • King KR, Hollibaugh JT & Azam F (1980) Predator-prey interactions between the larvacean Oikopleura dioica and bacterioplankton in enclosed water columns. Mar. Biol. 56: 49–57.

    Article  Google Scholar 

  • Kjelleberg S, Albertson N, Flärdh K, Holmquist L, Jouper-Jaan A, Marouga R, Östling J, Svenblad B & Weichart D (1993) How do non-differentiating bacteria adapt to starvation? Antonie van Leeuwenhoek 63: 333–341.

    Article  PubMed  CAS  Google Scholar 

  • Koval SF (1993) Predation on bacteria possessing S-layers. In: Beveridge TJ & Koval SF (Eds) Advances in Bacterial Paracrystalline Surface Layers (pp 85–92). Plenum Publishing Corporation, New York.

    Google Scholar 

  • Lampert W (1987) Predictability in lake ecosystems: the role of biotic interactions. In: Schulze ED & Zwölfer H (Eds) Potential and Limitations of Ecosystem Analysis. Ecological Studies 61 (pp 333–346). Springer-Verlag, Berlin.

    Google Scholar 

  • Landry MR, Lehner-Fournier JM, Sundstrom JA, Fagerness VL & Selph KE (1991) Discrimination between living and heat-killed prey by a marine zooflagellate Paraphysomonas vestita Stokes. J. Exp. Mar. Biol. Ecol. 146: 139–152.

    Article  Google Scholar 

  • Langenheder S & Jürgens K (2001) Regulation of bacterial biomass and community structure by metazoan and protozoan predation. Limnol. Oceanogr. 46: 121–134.

    Article  Google Scholar 

  • Lavrentyev PJ, Gardner WS & Johnson JR (1997) Cascading trophic effects on aquatic nitrification - experimental evidence and potential implications. Aquat. Microb. Ecol. 13: 161–175.

    Google Scholar 

  • Lebaron P, Servais P, Troussellier M, Courties C, Muyzer G, Bernard L, Schäfer H, Pukall R, Stackebrandt E, Guindulain T & Vives-Rego J (2001) Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: changes in abundances, activity and composition. FEMS Microb. Ecol. 34: 255–266.

    Article  CAS  Google Scholar 

  • Leibold MA (1989) Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. Am. Nat. 134: 922–949.

    Article  Google Scholar 

  • Lenski RE, Mongold JA, Sniegowski PD, Travisano M, Vasi F, Gerrish PJ & Schmidt TM (1998) Evolution of competitive fitness in experimental population of E. coli: What makes one genotype a better competitor than another? Antonie van Leeuwenhoek 73: 35–47.

    Article  PubMed  CAS  Google Scholar 

  • Levrat P, Pussard M & Alabouvette C (1992) Enhanced bacterial metabolism of a Pseudomonas strain in response to the addition of culture filtrate of a bacteriophagous amoeba. Europ. J. Protistol. 28: 79–84.

    Google Scholar 

  • Matz C, Boenigk J, Arndt H & Jürgens K (2002a) Role of bacterial phenotypic traits in selective feeding of the heterotrophic nanoflagellate Spumella sp. Aquat. Microb. Ecol. 27: 137–148.

    Google Scholar 

  • Matz C, Deines P & Jürgens K (2002b) Phenotypic variation in Pseudomonas sp. CM10 determines microcolony formation and survival under protozoan grazing. FEMS Microb. Ecol. 39: 57–65.

    Article  CAS  Google Scholar 

  • Matz C & Jürgens K (2001) Effects of hydrophobic and electrostatic cell surface properties of bacteria on feeding rates of heterotrophic nanoflagellates. Appl. Environ. Microbiol. 67: 814–820.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JG, Pearson L, Bonazinga A, Dillon S, Khouri H & Paxinos R (1995a) Long lag times and high velocities in the motility of natural assemblages of marine bacteria. Appl. Environ. Microbiol. 61: 877–882.

    PubMed  CAS  Google Scholar 

  • Mitchell JG, Pearson L, Dillon S & Kantalis K (1995b) Natural assemblages of marine bacteria exhibiting high-speed motility and large accelerations. Appl. Environ. Microbiol. 61: 4436–4440.

    PubMed  CAS  Google Scholar 

  • Monger BC & Landry MR (1990) Direct-interception feeding by marine zooflagellates: the importance of surface and hydrodynamic forces. Mar. Ecol. Prog. Ser. 65: 123–140.

    Google Scholar 

  • Monger BC & Landry MR (1991) Prey-size dependency of grazing by free-living marine flagellates. Mar. Ecol. Prog. Ser. 74: 239–248.

    Google Scholar 

  • Monger BC & Landry MR (1992) Size-selective grazing by heterotrophic nanoflagellates: an analysis using live-stained bacteria and dual-beam flow cytometry. Arch. Hydrobiol. Beih. Ergebn. Limnol. 37: 173–185.

    Google Scholar 

  • Monger BC, Landry MR & Brown SL (1999) Feeding selection of heterotrophic marine nanoflagellates based on the surface hydrophobicity of their picoplankton prey. Limnol. Oceanogr. 44: 1917–1927.

    Article  CAS  Google Scholar 

  • Morita RY (1982) Starvation-survival of heterotrophs in the marine environment. Adv. Microb. Ecol. 6: 171–198.

    Google Scholar 

  • Mozes N, Leonard AJ & Rouxhet PG (1988) On the relations between the elemental surface composition of yeasts and bacteria and their charge and hydrophobicity. Biochim. Biophys. Acta 945: 324–334.

    Article  PubMed  CAS  Google Scholar 

  • Nagata T & Kirchman DL (1992) Release of dissolved organic matter by heterotrophic protozoa: implications for microbial food webs. Arch. Hydrobiol. Beih. Ergebn. Limnol. 35: 99–109.

    Google Scholar 

  • Nold S & Zwart G (1998) Patterns and governing forces in aquatic microbial communities. Aquat. Ecol. 32: 17–35.

    Article  CAS  Google Scholar 

  • Nyström T, Olsson RM & Kjelleberg S (1992) Survival stress resistance and alterations in protein expression in the marine Vibrio sp strain s14 during starvation for different individual nutrients. Appl. Environ. Microbiol. 58: 55–65.

    PubMed  Google Scholar 

  • Ofek I, Goldhar J, Keisari Y & Sharon N (1995) Nonopsonic phagocytosis of microorganisms. Annu. Rev. Microbiol. 49: 239–276.

    Article  PubMed  CAS  Google Scholar 

  • Pace ML & Cole JJ (1994) Comparative and experimental approaches to top-down and bottom-up regulation of bacteria. Microb. Ecol. 28: 181–193.

    Article  Google Scholar 

  • Pace ML & Cole JJ (1996) Regulation of bacteria by resources and predation tested in whole-lake experiments. Limnol. Oceanogr. 41: 1448–1460.

    CAS  Google Scholar 

  • Pearson A (1996) Scavenger receptors in innate immunity. Curr. Opin. Immunol. 8: 20–28.

    Article  PubMed  CAS  Google Scholar 

  • Pernthaler J, Posch T, Šimek K, Vrba J, Amann R & Psenner R (1997) Contrasting bacterial strategies to coexist with a flagellate predator in an experimental microbial assemblage. Appl. Environ. Microbiol. 63: 596–601.

    PubMed  CAS  Google Scholar 

  • Pernthaler J, Posch T, Šimek K, Vrba J, Pernthaler A, Glöckner FO, Nübel U, Psenner R & Amann R (2001) Predator-specific enrichment of Actinobacteria from a cosmopolitan freshwater clade in mixed continuous culture. Appl. Environ. Microbiol. 67: 2145–2155.

    Article  PubMed  CAS  Google Scholar 

  • Pernthaler J, Sattler B, Šimek K, Schwarzenbacher A & Psenner R (1996) Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquat. Microb. Ecol. 10: 255–263.

    Google Scholar 

  • Plante CJ (2000) Role of bacterial exopolymeric capsules in protection from deposit-feeder digestion. Aquat. Microb. Ecol. 21: 211–219.

    Google Scholar 

  • Plante CJ & Shriver AG (1998) Differential lysis of sedimentary bacteria by Arenicola marina L.: Examination of cell wall structure and exopolymeric capsules as correlates. J. Exp. Mar. Biol. Ecol. 229: 35–52.

    Article  Google Scholar 

  • Posch T, Jezbera J, Vrba J, Šimek K, Pernthaler J, Andreatta S & Sonntag B (2001) Size selective feeding in Cyclidium glaucoma (Ciliophora, Scuticociliatida) and its effects on bacterial community structure: A study from a continuous cultivation system. Microb. Ecol. 42: 217–227.

    Article  PubMed  Google Scholar 

  • Posch T, Šimek K, Vrba J, Pernthaler S, Nedoma J, Sattler B, Sonntag B & Psenner R (1999) Predator-induced changes of bacterial size-structure and productivity studied on an experimental microbial community. Aquat. Microb. Ecol. 18: 235–246.

    Google Scholar 

  • Psenner R & Sommaruga R (1992) Are rapid changes in bacterial biomass caused by shifts from top-down to bottom-up control? Limnol. Oceanogr. 37: 1092–1100.

    Google Scholar 

  • Ramoino P (1997) Lectin-binding glycoconjugates in Paramecium primaurelia: changes with cellular age and starvation. Histochem. Cell Biol. 107: 321–329.

    Article  PubMed  CAS  Google Scholar 

  • Roszak DB & Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51: 365–379.

    PubMed  CAS  Google Scholar 

  • Sakaguchi M, Murakami H & Suzaki T (2001) Involvement of a 40-kDA glycoprotein in food recognition, prey capture, and induction of phagocytosis in the protozoon Actinophrys sol. Protist 152: 33–41.

    Article  PubMed  CAS  Google Scholar 

  • Sanders RW (1988) Feeding by Cyclidium sp. (Ciliophora, Scuticociliatida) on particles of different sizes and surface properties. Bull. mar. Sci. 43: 446–457.

    Google Scholar 

  • Sanders RW, Leeper DA, King CH & Porter KG (1994) Grazing by rotifers and crustacean zooplankton on nanoplanktonic protists. Hydrobiologia 288: 167–181.

    Article  Google Scholar 

  • Sanders RW & Wickham SA (1993) Planktonic protozoa and metazoa: Predation, food quality and population control. Mar. Microb. Food Webs 7: 197–223.

    Google Scholar 

  • Schäfer H, Bernard L, Courties C, Lebaron P, Servais P, Pukall R, Stackebrandt E, Troussellier M, Guindulain T, Vives-Rego J & Muyzer G (2001) Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: changes in the genetic diversity of bacterial populations. FEMS Microb. Ecol. 34: 243–253.

    Google Scholar 

  • Schmaljohann R, Pollingher U & Berman T (1987) Natural populations of bacteria in Lake Kinneret: Observations with scanning electron and epifluorescence microscopy. Microb. Ecol. 13: 1–12.

    Article  Google Scholar 

  • Sherr BF, del Giorgio P & Sherr EB (1999) Estimating abundance and single-cell characteristics of respiring bacteria via the redox dye CTC. Aquat. Microb. Ecol. 18: 117–131.

    Google Scholar 

  • Sherr BF & Sherr EB (1991) Proportional distribution of total numbers, biovolume and bacterivory among size classes of 2-20 µm nonpigmented marine flagellates. Mar. Microb. Food Webs 5: 227–237.

    Google Scholar 

  • Sherr BF, Sherr EB & Berman T (1982) Decomposition of organic detritus: A selective role for microflagellate protozoa. Limnol. Oceanogr. 27: 765–769.

    Article  CAS  Google Scholar 

  • Sherr EB (1988) Direct use of high molecular weight polysaccharide by heterotrophic flagellates. Nature 335: 348–351.

    Article  CAS  Google Scholar 

  • Sherr EB & Sherr BF (1987) High rates of consumption of bacteria by pelagic ciliates. Nature 325: 710–711.

    Article  Google Scholar 

  • Sibbald MJ, Albright LJ & Sibbald PR (1987) Chemosensory response of a heterotrophic microflagellate to bacteria and several nitrogen compounds. Mar. Ecol. Prog. Ser. 36: 201–201.

    CAS  Google Scholar 

  • Sih A (1993) Effects of ecological interactions on forager diets: competition, predation risk, parasitism and prey behaviour. In: Hughes RN (Ed) Diet Selection: An Interdisciplinary Approach to Foraging Behaviour (pp 182–211). Blackwell Scientific, Oxford.

    Google Scholar 

  • Šimek K, Bobkova J, Macek M, Nedoma J & Psenner R (1995) Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: A study at the species and community level. Limnol. Oceanogr. 40: 1077–1090.

    Google Scholar 

  • Šimek K & Chrzanowski TH (1992) Direct and indirect evidence of size-selective grazing on pelagic bacteria by freshwater nanoflagellates. Appl. Environ. Microbiol. 58: 3715–3720.

    PubMed  Google Scholar 

  • Šimek K, Kojecka P, Nedoma J, Hartman P, Vrba J & Dolan JR (1999) Shifts in bacterial community composition associated with different microzooplankton size fractions in a eutrophic reservoir. Limnol. Oceanogr. 44: 1634–1644.

    Google Scholar 

  • Šimek K, Pernthaler J, Weinbauer MG, Hornak K, Dolan JR, Nedoma J, Masin M & Amann R (2001) Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Appl. Environ. Microbiol. 67: 2723–2733.

    Article  PubMed  Google Scholar 

  • Šimek K, Vrba J, Pernthaler J, Posch T, Hartman P, Nedoma J & Psenner R (1997) Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes. Appl. Environ. Microbiol. 63: 587–595.

    PubMed  Google Scholar 

  • Sime-Ngando T, Bourdier G, Amblard C & Pinel Alloul B (1991) Short-term variations in specific biovolumes of different bacterial forms in aquatic ecosystems. Microb. Ecol. 21: 211–226.

    Google Scholar 

  • Singh B (1942) Toxic effects of certain bacterial metabolic products on soil protozoa. Nature 149: 168.

    CAS  Google Scholar 

  • Snyder RA (1991) Chemoattraction of a bactivorous ciliate to bacteria surface compounds. Hydrobiologia 215: 205–214.

    Article  CAS  Google Scholar 

  • Sommaruga R & Psenner R (1995) Permanent presence of grazingresistant bacteria in a hypertrophic Lake. Appl. Environ. Microbiol. 61: 3457–3459.

    PubMed  CAS  Google Scholar 

  • Sterner RW (1989) The role of grazers in phytoplankton succession. In: Sommer U (Ed) Plankton Ecology - Succession in Plankton Communities (pp 107–169). Springer, Berlin.

    Google Scholar 

  • Stoderegger KE & Herndl GJ (2001) Visualization of the exopolysaccharide bacterial capsule and its distribution in oceanic environments. Aquat. Microb. Ecol. 26: 195–199.

    Google Scholar 

  • Stoecker DK & Capuzzo JM (1990) Predation on protozoa: its importance to zooplankton. J. Plankton Res. 12: 891–908.

    Google Scholar 

  • Stoecker DK, Cucci TL, Hulburt EM & Yentsch cm (1986) Selective feeding by Balanion sp. (Ciliata, Balanionidae) on phytoplankton that best support its growth. J. Exp. Mar. Biol. Ecol. 95: 113–130.

    Article  Google Scholar 

  • Strom SL (2000) Bacterivory: interactions between bacteria and their grazers. In: Kirchman DL (Ed) Microbial Ecology of the Oceans (pp 351–386). Wiley-Liss, New York.

    Google Scholar 

  • Sutherland IW (1977) Bacterial exopolysaccharides - their nature and production. In: Sutherland IW (Ed) Surface Carbohydrates of the Procaryotic Cell (pp 27–96). Academic Press, New York.

    Google Scholar 

  • Suzuki MT (1999) Effect of protistan bacterivory on coastal bacterioplankton diversity. Aquat. Microb. Ecol. 20: 261–272.

    Google Scholar 

  • Taniguchi A & Takeda Y (1988) Feeding rate and behavior of the tintinnid ciliate Favella taraikaensis observed with a high speed VTR system. Mar. Microb. Food Webs 3: 21–34.

    Google Scholar 

  • Thingstad T (2000) Control of bacterial growth in idealized food webs. In: Kirchman D (Ed) Microbial Ecology of the Oceans (pp 229–261). Wiley-Liss, New York.

    Google Scholar 

  • Thingstad TF & Lignell R (1997) Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol. 13: 19–27.

    Google Scholar 

  • Tollrian R & Harvell C (1999). The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton.

    Google Scholar 

  • van Donk E, Lürling M & Lampert W (1998) Consumer-induced changes in phytoplankton: Inducibility, costs, benefits, and the impact on grazers. In: Tollrian R & Harvell C (Eds) The Ecology and Evolution of Inducible Defenses (pp 89–103). Princeton University Press, Princeton.

    Google Scholar 

  • Van Hannen EJ, Veninga M, Bloem J, Gons HJ & Laanbroek HJ (1999) Genetic changes in the bacterial community structure associated with protistan grazers. Arch. Hydrobiol. 145: 25–38.

    Google Scholar 

  • Verhagen FJM, Duyts H & Laanbroek HJ (1993) Effects of grazing by flagellates on competition for ammonium between nitrifying and heterotrophic bacteria in soil columns. Appl. Environ. Microbiol. 59: 2099–2106.

    PubMed  CAS  Google Scholar 

  • Verity PG (1991) Feeding in planktonic protozoans: Evidence for non-random acquisition of prey. J. Protozool. 38: 69–76.

    Google Scholar 

  • Wagner M, Amann R, Kämpfer P, Assmus B, Hartmann A, Hutzler P, Springer N & Schleifer KH (1994) Identification and in situ detection of gram-negative filamentous bacteria in activated sludge. Syst. Appl. Microbiol. 17: 405–417.

    Google Scholar 

  • Weinbauer MG & Höfle MG (1998) Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl. Environ. Microbiol. 64: 431–438.

    PubMed  CAS  Google Scholar 

  • Wickham SA (1995) Trophic relations between cyclopoid copepods and ciliated protists: Complex interactions link the microbial and classic food webs. Limnol. Oceanogr. 40: 1173–1181.

    Google Scholar 

  • Wolfe GV (2000) The chemical defense ecology of marine unicellular plankton: constraints, mechanisms, and impacts. Biol. Bull. 198: 225–244.

    PubMed  CAS  Google Scholar 

  • Yamada T, Muramatsu N & Kondo T (1993) Phagocytosis of monosaccharide-binding latex particles by guinea-pig polymorphonuclear leucocytes. J. Biomat. Sci. Polymer Ed. 4: 347–355.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jürgens, K., Matz, C. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Van Leeuwenhoek 81, 413–434 (2002). https://doi.org/10.1023/A:1020505204959

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020505204959

Navigation