Skip to main content
Log in

Parametric Optimization of Hybrid Car Engines

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

We consider the problem of optimal design of hybrid car engines which combine thermal and electric power. The optimal configuration of the different motors composing the hybrid system involves the choice of certain design parameters. For a given configuration, the goal is to minimize the fuel consumption along a trajectory. This is an optimal control problem with one state variable.

The simultaneous optimization of design parameters and trajectories can be formulated as a bilevel optimization problem. The lower level computes the optimal control for a given architecture. The higher level seeks for the optimal design parameters by solving a nonconvex nonsmooth optimization problem with a bundle method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equa-tions, Systems and Control: Foundations and Applications. Birkhäuser, Boston, 1997.

  • G. Barles, Solutions de viscositédes équations de Hamilton-Jacobi,vol. 17 of Mathématiques et applications. Springer, Paris, 1994.

    Google Scholar 

  • G. Barles and P. E. Souganidis, “Convergence of approximation schemes for fully nonlinear second order equations,” Asymptotic Analysis vol. 4, pp. 271–283, 1991.

    Google Scholar 

  • J. T. Betts, Practical Methods for Optimal Control Using Nonlinear Programming. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001.

    Google Scholar 

  • G. Blanchon, J. C. Dodu, and J. F. Bonnans, “Optimisation des réseaux électriques de grande taille,” in Analysis and Optimization of Systems, A. Bensoussan and J. L. Lions (Eds.), vol. 144 of Lecture Notes in Information and Control Sciences, Springer-Verlag: Berlin, 1990.

    Google Scholar 

  • J. F. Bonnans, J. Ch. Gilbert, C. Lemaréchal, and C. Sagastizábal, Numerical Optimization, Universitext. Springer-Verlag: Berlin, 2002.

    Google Scholar 

  • J. F. Bonnans, Th. Guilbaud, and H. Zidani, “Bilevel optimization for parametric optimal control problems,” Working paper. F. H. Clarke, Optimization and Nonsmooth Analysis, J.Wiley: New York, 1983.

    Google Scholar 

  • R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Springer-Verlag: Berlin, 1990.

    Google Scholar 

  • J. Gauvin, “The generalized gradient of a marginal function in mathematical programming,” Mathematics of Operations Research vol. 4, pp. 458–463, 1979.

    Google Scholar 

  • W. W. Hager, “Runge-Kutta methods in optimal control and the transformed adjoint system,” Numerische Mathematik vol. 87, pp. 247–282, 2000.

    Google Scholar 

  • H. Ishii and S. Koike, “A new formulation of state constraint problems for first-order PDEs,” SIAM Journal on Control and Optimization vol. 34, no. 2, pp. 554–571, 1996.

    Google Scholar 

  • H. J. Kushner and P. G. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time, 2nd edition, vol. 24 of Applications of Mathematics. Springer: New York. 2001.

    Google Scholar 

  • C. Lemaréchal and C. Sagastizábal, “Variable metric bundle methods: From conceptual to implementable forms,” Mathematical Programming vol. 76, pp. 393–410, 1997.

    Google Scholar 

  • C. Lemaréchal, J.-J. Strodiot, and A. Bihain, “On a bundle method for nonsmooth optimization,” in Nonlinear Programming,O. Mangasarian, R. R. Meyer, and S. M. Robinson (Eds.), vol. 4, Academic Press, 1981, pp. 245–282.

  • P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations,vol. 69 of Research Notes in Mathematics. Pitman, Boston, 1982.

    Google Scholar 

  • L. Lukšan and J. Vlček, “A bundle-Newton method for nonsmooth unconstrained minimization,” Math. Programming vol. 83, no. 3, Ser. A, pp. 373–391, 1998.

    Google Scholar 

  • D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Constrained model predictive control: Stability and optimality,” Automatica J. IFAC,vol. 36, no. 6, pp. 789–814, 2000. See also the correction in Automatica vol. 37, no. 3, p. 483, 2001.

    Google Scholar 

  • R. Mifflin, “Semismooth and semiconvex functions in constrained optimization,” SIAM J. Control and Optimization vol. 15, pp. 959–972, 1977.

    Google Scholar 

  • R. Mifflin, “A modification and extension of Lemarechal's algorithm for nonsmooth minimization,” Math. Programming Stud. vol. 17, pp. 77–90, 1982.

    Google Scholar 

  • J. Outrata, M. Kočvara, and J. Zowe, Nonsmooth Approach to Optimization Problems with Equilibrium Constraints, Kluwer Academic Publishers: Boston, 1998.

    Google Scholar 

  • H. Schramm and J. Zowe, “A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results,” SIAM J. on Optimization vol. 2, no. 1, pp. 121–152, 1992.

    Google Scholar 

  • H. Sonnet, Dictionnaire des Mathématiques Appliquées, Librairie de L. Hachette et Cie, Paris, 1867.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnans, J.F., Guilbaud, T., Ketfi-Cherif, A. et al. Parametric Optimization of Hybrid Car Engines. Optimization and Engineering 5, 395–415 (2004). https://doi.org/10.1023/B:OPTE.0000042032.47856.e5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:OPTE.0000042032.47856.e5

Navigation