Skip to main content
Log in

EGb761 Pretreatment Reduces Monoamine Oxidase Activity in Mouse Corpus Striatum During 1-Methyl-4-Phenylpyridinium Neurotoxicity

  • Published:
Neurochemical Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

EGb761 produces reversible inhibition of both monoamine oxidase (MAO) isoforms in the central nervous system. 1-methyl-4-phenylpyridinium (MPP+) neurotoxicity is prevented by treatment with the MAO inhibitor pargyline. We investigated EGb761's effect on striatal MAO activity during MPP+ neurotoxicity. C-57 black mice were pretreated with EGb761 (10 mg/kg) daily for 17 days followed by administration of MPP (0.72 mg/kg). MPP+ enhanced striatal MAO (30%) activity at 6 h, and EGb761 prevented this effect. MAO-B activity in striatum was enhanced (70%) 6 h after MPP+ administration and was reduced to almost normal levels in EGb761 + MPP+ group compared to MPP+ group. Pretreatment with EGb761 partially prevented (32%) the striatal dopamine-depleting effect of MPP+ and prevented the reduction in striatal tyrosine hydroxylase activity (100%). Results suggest that EGb761 supplements may be effective in reducing MAO activity as well as enhancement in dopamine metabolism, thereby preventing MPP+-neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. Jenner, P. 1989. Clues to the mechanism underlying dopamine cell death in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry (special suppl):22–28.

  2. Fahn, S. and Cohen, G. 1992. The oxidant stress hypothesis in Parkinson's disease: Evidence supporting it. Ann. Neurol. 32:804–812.

    Google Scholar 

  3. Glover, V., Sandler, M., Owen, F., and Riley, G. 1977. Dopamine is a monoamine oxidase B substrate in man. Nature 265:80–81.

    Google Scholar 

  4. Cohen, G. 1986. Monoamine oxidase, hydrogen peroxide, and Parkinson's disease. Pages 119–125, in Yahr, M. D. and Bergmann, K. J., (eds.), Advances in Neurology: Parkinson's disease, vol. 45, Raven Press, New York.

    Google Scholar 

  5. Riederer, P. and Jellinger, K. 1983. Neurochemical insights into monoamine oxidase inhibitors, with special reference to deprenyl (selegiline). Acta Neurol. Scand. Suppl. 95:43–55.

    Google Scholar 

  6. Knoll, J. 1995. Rationale for (−) deprenyl (selegiline) medication in Parkinson's disease and in prevention of age-related nigral changes. Biomed. Pharmacother. 49:187–195.

    Google Scholar 

  7. Gerlach, M., Riederer, P., Przuntek, H., and Youdim, M. B. H. 1991. MPTP mechanisms of neurotoxicity and their implications for Parkinson's disease. Eur. J. Pharmacol. Mol. Pharmacol. 208:273–286.

    Google Scholar 

  8. Zang, L. Y. and Misra, H. P. 1993. Generation of reactive oxygen species during the monoamine oxidase-catalyzed oxidation of the neurotoxicant, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J. Biol. Chem. 268:16504–16512.

    Google Scholar 

  9. Javitch, J. A., D'Amato, R. J., Strittmatter, S. M., and Snyder, S. H. 1985. Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine: Uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc. Natl. Acad. Sci. USA 82:2173–2177.

    Google Scholar 

  10. Nicklas, W. J., Vyas, I., and Heikkila, R. E. 1985. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenylpyridinium, a metabolite of the neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Life Sci. 36:2503–2508.

    Google Scholar 

  11. Chan, P., DeLanney, L. E., Irwin, I., Langston, J. W., and DiMonte, D. 1991. Rapid ATP loss caused by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine in mouse. J. Neurochem. 57:348–351.

    Google Scholar 

  12. Adams, J. D., Klaidman, L. K., and Leung, A. 1993. MPP+ and MPDP+ induced oxygen radical formation with mitochondrial enzymes. Free Radic. Biol. Med. 15:181–186.

    Google Scholar 

  13. Adams, J. D. and Odunze, I. N. 1991. Biochemical mechanisms of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine toxicity. Biochem. Pharmacol. 41:1099–1105.

    Google Scholar 

  14. Wu, R. M., Mohannakumar, K. P., Murphy, D. L., and Chiueh, C. C. 1994. Antioxidant mechanism and protection of nigral neurons against MPP+ toxicity by deprenyl (selegiline). Ann. NY Acad. Sci. 738:214–221.

    Google Scholar 

  15. Sagi, Y., Weinstock, M., and Youdim, M. B. 2003. Attenuation of MPTP-induced dopaminergic neurotoxicity by TV3326, a cholinesterase-monoamine oxidase inhibitor. J. Neurochem. 86(2):290–297.

    Google Scholar 

  16. DeFeudis, F. V. 1998. Ginkgo biloba extract (EGb761): from chemistry to the clinic. Ullstein Medical, Wiesbaden, P. 401.

    Google Scholar 

  17. Marcocci, L., Packer, L., Droy-Lefaix, M., Sekaki, A., and Gardes-Albert, M. 1994. Antioxidant action of Ginkgo biloba extract EGb761. Methods Enzymol. 234:462–475.

    Google Scholar 

  18. Pardon, M. C, Joubert, C., Perez-Diaz, F., Christen, Y., Launay, J. M., and Cohen-Salmon, C. 2000. In regulation of cerebral monoamine oxidase activity in senescent controls and chronically stressed mice by long-term treatment with Ginkgo biloba extract (EGb 761). Mech. Ageing Dev. 113:157–168.

    Google Scholar 

  19. Ramassamy, C., Clostre, F., Christen, Y., and Costentin, J. 1990. Prevention by a Ginkgo biloba extract (GBE 761) of the dopaminergic neurotoxicity of MPTP. J. Pharm. Pharmacol. 42:785–789.

    Google Scholar 

  20. Rojas, P., Garduño, B., Rojas, C., Vigueras, R. M., Rojas-Castañeda J, Ríos, C., and Serrano Garcia, N. 2001. EGb761 blocks MPP+-induced lipid peroxidation in mouse corpus striatum. Neurochem. Res. 26(11):1245–1251.

    Google Scholar 

  21. Wu, W-R. and Zhu, X-Z. 1999. Involvement of monoamine oxidase inhibition in neuroprotective and restorative effects of Ginkgo biloba extract against MPTP-induced nigrostriatal dopaminergic toxicity in C-57 mice. Life Sci. 65(2):157–164.

    Google Scholar 

  22. Rojas, P. and Ríos, C. 1993. Increased striatal lipid peroxidation after intracerebroventricular MPP+ administration to mice. Pharmacol. Toxicol. 72:364–368.

    Google Scholar 

  23. Morinan, A. and Garrat, H. M. 1985. An improved fluorometric assay for brain monamine oxidase. J. Pharmacol. Methods 13(3):213–223.

    Google Scholar 

  24. Kehr, W., Carlsson, A., Lindquist, M., Magnusson, T., and Atack, C. 1972. Evidence for a receptor mediated feedback control of striatal tyrosine hydroxylase activity. J. Pharm. Pharmacol. 24:744–747.

    Google Scholar 

  25. Miquel, J. and Fleming, J. 1986. Theoretical and experimental support for an “oxygen radical mitochondrial injury” hypothesis of cell aging. Pages 51–74, in Johnson, Jr., Walford, R., Harman, D., and Miquel, J. (eds.), Free radicals, aging and degenerative diseases, vol. 8, Alan R. Liss, Inc., New York.

    Google Scholar 

  26. Richter, C., Park, J. W., and Ames, B. 1988. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA. 85:6465–6467.

    Google Scholar 

  27. Johns, D. R. 1995. Mitochondrial DNA and disease. N. Engl. J. Med. 333:638–644.

    Google Scholar 

  28. Hauptmann, N., Grimsby, J., Shih, J. C., and Cadenas, E. 1996. The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA. Arch. Biochem. Biophys. 335(2):295–304.

    Google Scholar 

  29. Sastre, J., Millán, A., De la Asunción García, J., Plá R., Juan, G., Pallardó, F. V., O'Connor, E., Martín, J. A., Droy Lefaix, M. T., and Viña, J. 1998. A Ginkgo biloba extract (EGb761) prevents mitochondrial aging by protecting against oxidative stress. Free Radic. Biol. Med. 24(2):298–304.

    Google Scholar 

  30. Corbisier, P., Raes, M., Michiels, C., Pigeolet, E., Houbion, A., Delaive, E., and Remacle, J. 1990. Respiratory activity of isolated rat liver mitochondria following in vitro exposure to oxygen species: A threshold study. Mech. Ageing Dev. 51:249–263.

    Google Scholar 

  31. Scalettar, B. A., Abney, J. R., and Hackenbrock, C. R. 1991. Dynamics, structure and function are coupled in the mitochondrial matrix. Proc. Natl. Acad. Sci. USA. 88:8057–8061.

    Google Scholar 

  32. Mitra, N., Mohanakumar, K. P., and Ganguly, D. K. 1994. Resistance of golden hamster to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine: Relationship with low levels of regional monoamine oxidase B. J. Neurochem. 62:1906–1912.

    Google Scholar 

  33. Melega, W. P., Cho, A. K., Schmitz, D., Kuczenski, R., and Segal, D. S. 1999. L-amphetaminepharmacokinetics and pharmacodynamics for assessment of in vivo deprenyl-derived L-amphetamine. J. Pharmacol. Exp. Ther. 288:752–758.

    Google Scholar 

  34. Sloley, B. D., Urichuk, L. J., Morley, P., Durkin, J., Shan, J. J., Pang, P. K. T., and Coutts, R. T. 2000. Identification of karempferol as a monoamine oxidase inhibitor and potential neuroprotectant in extracts of Ginkgo biloba leaves. J. Pharm. Pharmacol. 52:451–459.

    Google Scholar 

  35. Ara, J., Przedborski, S., Naini, A. B., Jackson-Lewis, V., Trifiletti, R. R., Horwitz, J., and Ischiropoules, H. 1998. Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Proc. Natl. Acad. Sci. USA 95:7659–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Rojas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojas, P., Rojas, C., Ebadi, M. et al. EGb761 Pretreatment Reduces Monoamine Oxidase Activity in Mouse Corpus Striatum During 1-Methyl-4-Phenylpyridinium Neurotoxicity. Neurochem Res 29, 1417–1423 (2004). https://doi.org/10.1023/B:NERE.0000026406.64547.93

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000026406.64547.93

Navigation