Skip to main content
Log in

Mitotic and Polytene Chromosomes: Comparisons Between Drosophila Melanogaster and Drosophila Simulans

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

This review deals with the differences between Drosophila melanogaster and Drosophila simulans in their mitotic and polytene chromosomes. The description of the mitotic karyotypes of D. melanogaster and D. simulans is mainly based on the methods that allow to differentiate their euchromatin from their heterochromatin: banding patterns, distribution of satellite DNAs and location of the rDNA. The polytene chromosomes karyotypes are known for many years to differ by a major paracentric inversion on chromosome 3 and minor few differences. The main difference take place in their chromosomal polymorphism: D. melanogaster is highly polymorphic while D. simulans has long been known to be a monomorphic species. In fact, despite worldwide studies of natural populations for both species, only 14 unique inversions have been described for D. simulans while more than 500 inversions are already known for D. melanogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adkisson, K.P., W.J. Perreault & H. Gay, 1971. Differential fluorescent staining of Drosophila chromosomes with quinacrine mustard. Chromosoma 34: 190–205.

    Google Scholar 

  • Ashburner, M., 1969a. Patterns of puffing activity in the salivary gland chromosomes of Drosophila. II. The X-chromosome puffing patterns of D. melanogaster and D. simulans. Chromosoma 27: 47–63.

    Google Scholar 

  • Ashburner, M., 1969b. Patterns of puffing activity in the salivary gland chromosomes of Drosophila. III. A comparison of the autosomal puffing patterns of the sibling species D. melanogaster and D. simulans. Chromosoma 27: 64–85.

    Google Scholar 

  • Ashburner, M., 1989. Drosophila: A Laboratory Handbook. Cold Spring Harbor laboratory Press, CSH.

  • Ashburner, M. & F. Lemeunier, 1976. Relationships within the melanogaster species subgroup of the genus Drosophila (Sophophora). I. Inversion polymorphisms in Drosophila melanogaster and Drosophila simulans. Proc. R. Soc. Lond. B 193: 137–157.

    Google Scholar 

  • Aulard, S., J.R. David & F. Lemeunier, 2002. Chromosomal inversion polymorphism in Afrotropical populations of Drosophila melanogaster. Genet. Res. 79: 49–63.

    Google Scholar 

  • Ault, J.G. & C.L. Rieder, 1994. Meiosis in Drosophila males. I. The question of separate conjunctive mechanisms for the XY and autosomal bivalents. Chromosoma 103: 352–356.

    Google Scholar 

  • Barnes, S.R., D.A. Webb & G.A. Dover, 1978. The distributions of satellite and main-band DNA components in the melanogaster species subgroup of Drosophila. Chromosoma 67: 341–363.

    Google Scholar 

  • Bock, I.R. & M.R. Wheeler, 1972. The Drosophila melanogaster species group. Univ. Tex. Publ. 7213: 1–102.

    Google Scholar 

  • Bridges, C.B., 1935. Salivary chromosome maps with a key to the banding of the chromosomes of Drosophila melanogaster. J. Hered. 26: 60–64.

    Google Scholar 

  • Bridges, C.B., 1937. Correspondences between linkage maps and salivary chromosome structure as illustrated in the tip of chromosome 2R of Drosophila melanogaster. Cytologia (Fujii Jubil. Vol.), 745-755.

  • Bridges, C.B., 1938. A revised map of the salivary gland X-chromosome of Drosophila melanogaster. J. Hered. 29: 11–13.

    Google Scholar 

  • Bridges, P.N., 1941a. A revised map of the left limb of the third chromosome of Drosophila melanogaster. J. Hered. 32: 64–65.

    Google Scholar 

  • Bridges, P.N., 1941b. A revision of the salivary gland 3R-chromosome map. J. Hered. 32: 299–300.

    Google Scholar 

  • Bridges, P.N., 1942. A new map of the salivary gland 2L-chromosome of Drosophila melanogaster. J. Hered. 33: 403–408.

    Google Scholar 

  • Bridges, C.B. & P.N. Bridges, 1939. A new map of the second chromosome. A revised map of the right limb of second chromosome of Drosophila melanogaster. J. Hered. 30: 475–476.

    Google Scholar 

  • Brncic, D., 1970. Studies on the evolutionary biology of Chilean species of Drosophila, pp. 401-436 in Essays in Evolution and Genetics in Honour of Theodosius Dobzhansky, edited by M.K. Hecht & W.M. Steere. Amsterdam.

  • Carson, H.L., 1992. Inversions in Hawaiian Drosophila, pp. 407–439 in Drosophila Inversion Polymorphism, edited by C.B. Krimbas & J.R. Powell. CRC Press, Boca Raton.

    Google Scholar 

  • Clayton, F.E. & W.C. Guest, 1986. Overview of chromosomal evolution in the family Drosophilidae, pp. 1–38 in The Genetics and Biology of Drosophila, Vol. 3e, edited by M. Ashburner, H.L. Carson & J.N. Thompson Jr. Academic Press, London.

    Google Scholar 

  • Clayton, F.E. & M.R. Wheeler, 1975. A catalog of Drosophila metaphase chromosome configurations, pp. 471–512 in Handbook of Genetics, Vol. 3, edited by R.C. King. Plenum Press, New York.

    Google Scholar 

  • Cooper, K.W., 1950. Normal spermatogenesis in Drosophila, pp. 1–61 in Biology of Drosophila, edited by M. Demerec, Wiley, New York.

    Google Scholar 

  • Dobzhansky, Th., 1939. Experimental studies on genetics of free-living populations of Drosophila. Biol. Rev. Camb. Philos. Soc. 14: 339–368.

    Google Scholar 

  • Dubinin, N.P., N.N. Sokolov & G.G. Tiniakov, 1937. Intraspecific chromosome variability. Biologicheskii Zhurnal 6: 1007–1054 (in Russian with English summary).

    Google Scholar 

  • Eickbush, D.G. & T.H. Eickbush, 1995. Vertical transmission of the retrotransposable elements R1 and R2 during the evolution of the Drosophila melanogaster species subgroup. Genetics 139: 671–684.

    Google Scholar 

  • Ellison, J.R. & H.J. Barr, 1971. Differences in the quinacrine staining of the chromosomes of a pair of sibling species: Drosophila melanogaster and Drosophila simulans. Chromosoma 34: 424–435.

    Google Scholar 

  • Engels, W.R. & C.R. Preston, 1984. Formation of chromosome rearrangements by P factors in Drosophila. Genetics 107: 657–678.

    Google Scholar 

  • Freire-Maia, N., 1955. (Discussion after paper of W.S. Stone). Cold Spring Harb. Symp. Quant. Biol. 20: 270.

    Google Scholar 

  • Freire-Maia, N., 1964. Chromosomal monomorphism in Brazilian and Argentine populations of D. simulans and D. repleta. Genetics 50: 1447–1448.

    Google Scholar 

  • Gatti, M. & S. Pimpinelli, 1983. Cytological and genetic analysis of the Y chromosome of Drosophila melanogaster. Chromosoma 88: 349–373.

    Google Scholar 

  • Gatti, M. & S. Pimpinelli, 1992. Functional elements in Drosophila melanogaster heterochromatin. Ann. Rev. Genet. 26: 239–275.

    Google Scholar 

  • Gatti, M., S. Pimpinelli & G. Santini, 1976. Characterization of Drosophila heterochromatin. I. Staining and decondensation with Hoechst 33258 and quinacrine. Chromosoma 57: 351–375.

    Google Scholar 

  • Hannah, A., 1951. Localization and function of heterochromatin in Drosophila melanogaster. Adv. Genet. 4: 87–125.

    Google Scholar 

  • Heitz, E., 1933. Die somatische Heteropyknose bei Drosophila melanogaster und ihre genetische Bedeutung. Z. Zellforsch. Mikrosk. Anat. 20: 237–287.

    Google Scholar 

  • Heitz, E., 1934. Uber ? und ?-Heterochromatin sowie konstanz und bauder Chromomeren bei Drosophila. Biol. Zentralbl. 45: 588–609.

    Google Scholar 

  • Holmquist, G., 1975. Hoechst 33258 fluorescent staining of Drosophila chromosomes. Chromosoma 49: 333–356.

    Google Scholar 

  • Horton, I.H., 1939. A comparison of the salivary gland chromosomes of Drosophila melanogaster and D. simulans. Genetics 24: 234–243.

    Google Scholar 

  • Hsu, T.C., 1971. Heterochromatin pattern in metaphase chromosomes of Drosophila melanogaster. J. Hered. 62: 285–287.

    Google Scholar 

  • Inoue, Y., 1988. Chromosomal mutation in Drosophila melanogaster and Drosophila simulans. Mut. Res. 197: 85–92.

    Google Scholar 

  • Inoue, Y. & Y. Igarashi, 1994. On the category of naturally occurring inversions of Drosophila melanogaster. Jpn. J. Genet. 69: 105–118.

    Google Scholar 

  • Itoh, K., 1980. Lack of chromosomal polymorphism and low frequencies of unique inversions of Drosophila simulans. Dros. Inf. Serv. 55: 64.

    Google Scholar 

  • Junakovic, N., A. Terrinoni, C. Di Franco, C. Vieira & C. Loevenbruck, 1998. Accumulation of transposable elements in the heterochromatin and on the Y chromosome of Drosophila simulans and Drosophila melanogaster. J. Mol. Evol. 46: 661–668.

    Google Scholar 

  • Kaufmann, B.P., 1934. Somatic mitoses of Drosophila melanogaster. J. Morph. 56: 125–155.

    Google Scholar 

  • Kikkawa, H.J. & F.T. Peng, 1938. Drosophila species of Japan and adjacent localities. Jpn. J. Zool. 7: 507–552.

    Google Scholar 

  • King, R.C., 1975. Drosophila melanogaster: an introduction, pp. 625–652 in Handbook of Genetics, Vol. 3, edited by R.C. King. Plenum Press, New York.

    Google Scholar 

  • Krimbas, C.B., 1963. Drosophila species in Greece. Dros. Inf. Serv. 37: 95.

    Google Scholar 

  • Kusakabe, S., K. Harada & T. Mukai, 1990. The rare inversion with a P element at the breakpoint maintained in a natural population of Drosophila melanogaster. Genetica 82: 111–115.

    Google Scholar 

  • Ladevèze V., I. Galindo, L. Pascual, G. Périquet & F. Lemeunier, 1994. Invasion of the hobo transposable element studied by in situ hybridization on polytene chromosomes of Drosophila melanogaster. Genetica 93: 91–100.

    Google Scholar 

  • Ladevèze V., N. Chaminade, G. Périquet & F. Lemeunier, 1998a. Transmission pattern of hobo transposable element in transgenic lines of Drosophila melanogaster. Genet. Res. Camb. 71: 97–107.

    Google Scholar 

  • Ladevèze V., S. Aulard, N. Chaminade, G. Périquet & F. Lemeunier, 1998b. Hobo transposons causing chromosomal breakpoints. Proc. R. Soc. Lond. B 265: 1157–1159.

    Google Scholar 

  • Lefevre Jr., G., 1976. A photographic representation and interpretation of the polytene chromosomes of Drosophila melanogaster salivary glands, pp. 32–66 in The Genetics and Biology of Drosophila, Vol. 1a, edited by M. Ashburner & E. Novitski. Academic Press, New York.

    Google Scholar 

  • Lemeunier, F. & M. Ashburner, 1976. Relationships within the melanogaster species subgroup of the genus Drosophila (Sophophora). II. Phylogenetic relationships between six species based upon polytene banding sequences. Proc. R. Soc. Lond. B 193: 275–294.

    Google Scholar 

  • Lemeunier, F. & M. Ashburner, 1984. Relationships within the melanogaster species subgroup of the genus Drosophila (Sophophora). IV. The chromosomes of two new species. Chromosoma 89: 343–351.

    Google Scholar 

  • Lemeunier, F. & S. Aulard, 1992. Inversion polymorphism in Drosophila melanogaster, pp. 339–405 in Drosophila Inversion Polymorphism, edited by C.B. Krimbas & J.R. Powell. CRC Press, Boca Raton.

    Google Scholar 

  • Lemeunier, F., J.R. David, L. Tsacas & M. Ashburner, 1986. The melanogaster species group, pp. 147–256 in The Genetics and Biology of Drosophila, Vol 3e, edited by M. Ashburner, H.L. Carson & J.N. Thompson Jr. Academic Press, New York.

    Google Scholar 

  • Lemke, D.E., J. Tonzetich & M.V. Shumeyko, 1978. Resistance to radiation induced chromosomal rearrangements in Drosophila simulans. Dros. Inf. Serv. 53: 159–161.

    Google Scholar 

  • Lim, J.K. & M.J. Simmons, 1994. Gross chromosome rearrangements mediated by transposable elements in Drosophila melanogaster. BioEssays 16: 269–275.

    Google Scholar 

  • Lindsley, D.L. & E.H. Grell, 1968. Genetic variations of Drosophila melanogaster. Carnegie Inst. Washington Publication No. 627.

  • Lohe, A.R., 1977. Highly repeated DNA in Drosophila simulans. PhD Thesis, Australian National University, Canberra.

    Google Scholar 

  • Lohe, A.R., 1981. The satellite DNAs of Drosophila simulans. Genet. Res. 38: 237–250.

    Google Scholar 

  • Lohe, A.R. & P.A. Roberts, 1988. Evolution of satellite DNA sequences in Drosophila, pp. 148–186 in Heterochromatin, Molecular and structural aspects, edited by R.S. Verma. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Lohe, A.R. & P.A. Roberts, 1990. An unusual Y chromosome of Drosophila simulans carrying amplified rDNA spacer without rRNA genes. Genetics 125: 399–406.

    Google Scholar 

  • Lohe, A.R. & P.A. Roberts, 2000. Evolution of DNA in heterochromatin: the Drosophila melanogaster sibling species subgroup as a source. Genetica 109: 125–130.

    Google Scholar 

  • Long, E.O. & I.B. Dawid, 1980. Repeated genes in eukaryotes. Annu. Rev. Biochem. 49: 727–764.

    Google Scholar 

  • Lyttle, T.W. & D.S. Haymer, 1992. The role of the transposable element hobo in the origin of endemic inversions in wild populations of Drosophila melanogaster. Genetica 86: 113–126.

    Google Scholar 

  • Matsui, S. & M. Sasaki, 1973. Differential staining of nucleolus organisers in mammalian chromosomes. Nature 246: 148–150.

    Google Scholar 

  • McKee, B.D., 1996. The license to pair: identification of meiotic pairing sites in Drosophila. Chromosoma 105: 135–141.

    Google Scholar 

  • McKee, B.D., C.-S. Hong & S. Yoo, 2000. Meiotic pairing sites and genes involved in segregation of the X and Y chromosomes of Drosophila melanogaster, pp. 139–152 in Chromosomes Today, Vol. 13, edited by E. Olmo & C.A. Redi. Birkhäuser, Basel, Switzerland.

    Google Scholar 

  • Mettler, L.E., R.A. Voelker & T. Mukai, 1977. Inversion clines in populations of Drosophila melanogaster. Genetics 87: 169–176.

    Google Scholar 

  • Metz, C.W., 1914. Chromosome studies in the Diptera. I. A preliminary survey of five different types of chromosome groups in the genus Drosophila. J. Exp. Zool. 17: 45–59.

    Google Scholar 

  • Metz, C.W., 1916a. Chromosome studies in the Diptera. II. The paired association of chromosomes in the Diptera and its significance. J. Exp. Zool. 21: 213–279.

    Google Scholar 

  • Metz, C.W., 1916b. Chromosome studies in the Diptera. III. Additional chromosome groups in the Drosophilidae. Am. Nat. 50: 587–599.

    Google Scholar 

  • Montchamp-Moreau, C., 1990. Dynamics of P-M hybrid dysgenesis in P-transformed lines of Drosophila simulans. Evolution 44: 194–203.

    Google Scholar 

  • Mourad, A.M. & G.S. Mallah, 1960. Chromosomal polymorphism in Egyptian populations of Drosophila melanogaster. Evolution 14: 166–170.

    Google Scholar 

  • Mourad, A.M., A.O. Tantawy & A.M. Masry, 1972. Studies on natural populations of Drosophila. XIII. Chromosomal polymorphism in Drosophila melanogaster and its relation to resistance to certain insecticides. Egypt. J. Genet. Cytol. 1: 141–148.

    Google Scholar 

  • Muller, H.J., 1940. Bearings of the “Drosophila” work on problems of systematics, pp. 185–268 in The New Systematics, edited by J. Huxley. Clarendon Press, Oxford.

    Google Scholar 

  • Mulligan, P.K. & E.M. Rasch, 1980. The determination of genome size in male and female germ cell of D. melanogaster by DNA-Feulgen cytophotometry. Histochemistry 66: 11–18.

    Google Scholar 

  • Painter, T.S., 1933. A new method for the study of chromosome rearrangements and the plotting of chromosome maps. Science 78: 585–586.

    Google Scholar 

  • Painter, T.S., 1934a. A new method for the study of chromosome aberrations and the plotting of chromosome maps in Drosophila melanogaster. Genetics 19: 175–188.

    Google Scholar 

  • Painter, T.S., 1934b. The morphology of the X-chromosome in salivary glands of Drosophila melanogaster and a new type of chromosome map for this element. Genetics 19: 448–469.

    Google Scholar 

  • Painter, T.S., 1934c. Salivary chromosomes and the attack on the gene. J. Hered. 25: 465–476.

    Google Scholar 

  • Patau, V.K., 1935. Chromosomenmorphologie bei Drosophila melanogaster und Drosophila simulans und ihre genetische Bedeutung. Naturwissenschaften 23: 537–543.

    Google Scholar 

  • Patterson, J.P. & W.S. Stone, 1952. Evolution in the Genus Drosophila. Macmillan, New York.

    Google Scholar 

  • Pimpinelli, S., 2000. The functional and structural organization of Drosophila heterochromatin, pp. 29–44 in Chromosomes Today, Vol. 13, edited by E. Olmo & C.A. Redi. Birkhäuser, Basel, Switzerland.

    Google Scholar 

  • Pimpinelli, S., G. Santini & M. Gatti, 1976. Characterization of Drosophila heterochromatin. II. C-and N-banding. Chromosoma 57: 377–386.

    Google Scholar 

  • Pimpinelli, S., M. Berloco, L. Fanti, P. Dimitri, S. Bonaccorsi, E. Marchetti, R. Caizzi, C. Caggese & M. Gatti, 1995. Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc. Natl. Acad. Sci. 92: 3804–3808.

    Google Scholar 

  • Polanco, C., A.I. Gonzalez, A. de la Fuente & G.A. Dover, 1998. Multigene family of ribosomal DNA in Drosophila melanogaster reveals contrasting patterns of homogenization for IGS and ITS spacer regions. A possible mechanism to resolve this paradox. Genetics 149: 243–256.

    Google Scholar 

  • Powell, J.R., 1997. Progress and Prospects in Evolutionary Biology: The Drosophila Model. Oxford University Press, Oxford.

    Google Scholar 

  • Redi, C.A., S. Garagna, H. Zacharias, M. Zuccotti & E. Capanna, 2001. The other chromatin. Chromosoma 110: 136–147.

    Google Scholar 

  • Roiha, H., J.R. Miller, L.C. Woods & D.M. Glover, 1981. Arrangements and rearrangements of sequences flanking the two types of rDNA insertion in D. melanogaster. Nature 290: 749–753.

    Google Scholar 

  • Simeone, A., A. La Volpe & E. Boncinelli, 1985. Nucleotide sequence of a complete ribosomal spacer of D. melanogaster. Nucl. Acids Res. 13: 1089–1101.

    Google Scholar 

  • Sorsa, V., 1988. Polytene Chromosomes in Genetic Research, edited by A. Wiseman. Ellis Horwood, Chichester.

    Google Scholar 

  • Sperlich, D. & P. Pfriem, 1986. Chromosomal polymorphism in natural and experimental populations, pp. 257–309 in The Genetics and Biology of Drosophila, Vol. 3e, edited by M. Ashburner, H.L. Carson & J.N. Thompson Jr. Academic Press, New York.

    Google Scholar 

  • Stevens, N.M., 1907. A study of the germ cells of certain Diptera with reference to the heterosis and the phenomena of synapsis. J. Exp. Zool. 5: 359–374.

    Google Scholar 

  • Sturtevant, A.H., 1917. Genetic factors affecting the strength of linkage in Drosophila. Proc. Natl. Acad. Sci. 3: 555–558.

    Google Scholar 

  • Sturtevant, A.H., 1920. Genetic studies on Drosophila simulans. I. Introduction. Hybrids with Drosophila melanogaster. Genetics 5: 488–500.

    Google Scholar 

  • Sturtevant, A.H., 1921. A case of rearrangement of genes in Drosophila. Proc. Natl. Acad. Sci. 7: 275–277.

    Google Scholar 

  • Sturtevant, A.H., 1926. A crossover reducer in Drosophila melanogaster due to inversion of a section of the third chromosome. Biol. Zentralbl. 46: 697–702.

    Google Scholar 

  • Sturtevant, A.H., 1929. The genetics of Drosophila simulans. Carnegie Inst. Washington Publication No. 399, pp. 1-62.

  • Sturtevant, A.H. & E. Novitski, 1941. The homologies of the chromosome elements in the genus Drosophila. Genetics 26: 517–541.

    Google Scholar 

  • Sturtevant, A.H. & C.R. Plunkett, 1926. Sequence of corresponding third chromosome genes in Drosophila melanogaster and Drosophila simulans. Biol. Bull. (Woods Hole, Mass) 50: 56–60.

    Google Scholar 

  • Tautz, D., J.M. Hancock, D.A. Webb, C. Tautz & G.A. Dover, 1988. Complete sequences of the rRNA genes of Drosophila melanogaster. Mol. Biol. Evol. 5: 366–376.

    Google Scholar 

  • Vlassova, I.E., A.S. Graphodatsky, S. Alexander, E.S. Belyaeva & I.F. Zhimulev, 1991. Constitutive heterochromatin in early embryogenesis of Drosophila melanogaster. Mol. Gen. Genet. 229: 316–318.

    Google Scholar 

  • Vosa, G., 1970. The discriminating fluorescence patterns of the chromosomes of Drosophila melanogaster. Chromosoma 31: 446–451.

    Google Scholar 

  • Watanabe, T.K. & M. Kawanishi, 1976. Colonization of Drosophila simulans in Japan. Proc. Jpn. Acad. 52: 191–194.

    Google Scholar 

  • Wharton, L.T., 1943. Analysis of the metaphase and salivary chromosome morphology within the genus Drosophila. University of Texas Publication No. 4313, pp. 282-319.

  • Woodruff, R.C. & M. Ashburner, 1978. The frequency of Xray induced chromosome breakage in the sibling species D. melanogaster and D. simulans. Am. Nat. 112: 456–459.

    Google Scholar 

  • Zabalou, S., S.N. Alahiotis & G. Yannopoulos, 1994. A threeseason comparative analysis of the chromosomal distribution of P and hobo mobile elements in a natural population of Drosophila melanogaster. Hereditas 120: 127–140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Lemeunier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aulard, S., Monti, L., Chaminade, N. et al. Mitotic and Polytene Chromosomes: Comparisons Between Drosophila Melanogaster and Drosophila Simulans . Genetica 120, 137–150 (2004). https://doi.org/10.1023/B:GENE.0000017637.10230.c4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GENE.0000017637.10230.c4

Navigation