Skip to main content
Log in

The Relationship Between Adhesion Molecules and Neuronal Plasticity

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. It is presently widely assumed that structural reorganization of synaptic architectures subserves the functional gains that define certain neuronal plasticities.

2. While target molecules thought to participate in such morphological dynamics are not well defined, growing evidence suggests a pivotal role for cell adhesion molecules.

3. Herein, brief discussions are presented on (i) the history of how adhesion molecules became implicated in plasticity and memory processes, (ii) the general biology of some of the major classes of such molecules, and (iii) the future of the adhesion molecule/plasticity relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Albelda, S. M., and Buck, C. A. (1990). Integrins and other cell adhesion molecules. FASEB J. 4:2868–2880.

    PubMed  Google Scholar 

  • Ambros-Ingerson, J., and Lynch, G. (1993). Channel gating kinetics and synaptic efficacy: A hypothesis for expression of long-term potentiation. Proc. Natl. Acad. Sci. USA 90:7903–7907.

    PubMed  Google Scholar 

  • Ambros-Ingerson, J., Larson, J., Xiao, P., and Lynch, G. (1991). LTP changes the waveform of synaptic responses. Synapse 9:314–316.

    PubMed  Google Scholar 

  • Ambros-Ingerson, J., Xiao, P., Larson, J., and Lynch, G. (1993). Waveform analysis suggests that LTP alters the kinetics of synaptic receptor channels. Brain Res. 620:237–244.

    Article  PubMed  Google Scholar 

  • Arai, A., Larson, J., and Lynch, G. (1990). Anoxia reveals a vulnerable period in the development of long-term potentiation. Brain Res. 511:353–357.

    Article  PubMed  Google Scholar 

  • Arami, S., Jucker, M., Schachner, M., and Welzl, H. (1996). The effect of continuous intraventricular infusion of L1 and NCAM antibodies on spatial learning in rats. Behav. Brain Res. 81:81–87.

    Article  PubMed  Google Scholar 

  • Bahr, B. A., and Lynch, G. (1992). Purification of an Arg-Gly-Asp selective matrix receptor from brain synaptic plasma membranes. Biochem. J. 281:137–142.

    PubMed  Google Scholar 

  • Bahr, B. A., Staubli, U., Xiao, P., Chun, D., Ji, Z., Esteban, E. T., and Lynch, G. (1997). Arg-Gly-Asp-Ser selective adhesion and the stabilization of LTP: Pharmacological studies and the characterization of a candidate matrix receptor. J. Neurosci. 17:1320–1329.

    PubMed  Google Scholar 

  • Barrionuevo, G., Schottler, F., and Lynch, G. (1980). The effects of repetitive low frequency stimulation on control and “potentiated” synaptic responses in the hippocampus. Life Sci. 27:2385–2391.

    Article  PubMed  Google Scholar 

  • Bliss, T. V. P., and Collingridge, G. L. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 361:31–39.

    Article  PubMed  Google Scholar 

  • Bliss, T. V. P., and Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232:331–356.

    PubMed  Google Scholar 

  • Brackenbury, R., Thiery, J. P., Rutishauser, U., and Edelman, G. M. (1977). Adhesion among neural cells of the chick embryo. I. An immunological assay for molecules involved in cell-cell binding. J. Biol. Chem. 252:6835–6840.

    PubMed  Google Scholar 

  • Bronner-Fraser, M., Wolf, J. J., and Murray, B. A. (1992). Effects of antibodies against N-cadherin and N-CAM on the cranial neural crest and neural tube. Dev. Biol. 153:291–301.

    Article  PubMed  Google Scholar 

  • Buchs, P. A., and Muller, D. (1996). Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses. Proc. Natl. Acad. Sci. USA 93:8040–8045.

    Article  PubMed  Google Scholar 

  • Calverley, R. K. S., and Jones, D. G. (1992). Contributions of dendritic spines and perforated synapses to synaptic plasticity. Brain Res. Rev. 15:215–249.

    Article  Google Scholar 

  • Chang, F. L., and Greenough, W. T. (1984). Transient and enduring morphological correlates of synaptic activity and efficacy change in the rat hippocampal slice. Brain Res. 309:35–46.

    Article  PubMed  Google Scholar 

  • Changeux, J. P., and Danchin, A. (1976). Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks. Nature 264:705–712.

    PubMed  Google Scholar 

  • Collingridge, G. L., Kehl, S. J., and McLennan, H. (1983). Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. 334:33–46.

    PubMed  Google Scholar 

  • Cotman, C. W., and Nieto-Sampedro, M. (1984). Cell biology of synaptic plasticity. Science 225:1287–1294.

    PubMed  Google Scholar 

  • Cremer, H., Lange, R., Christoph, A., Plomann, M., Vopper, G., Roes, J., Brown, R., Baldwin, S., Kraemer, P., Scheff, S., et al. (1994). Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367:455–459.

    Article  PubMed  Google Scholar 

  • Cunningham, B. A., Hoffman, S.; Rutishauser, U., Hemperly, J. J., and Edelman, G. M. (1983). Molecular topography of the neural cell adhesion molecule N-CAM: surface orientation and location of sialic acid-rich and binding regions. Proc. Natl. Acad. Sci. USA 80:3116–3120.

    PubMed  Google Scholar 

  • de la Rosa, E. J., Kayyem, J. F., Roman, J. M., Stierhof, Y. D., Dreyer, W. J., and Schwarz, U. (1990). Topologically restricted appearance in the developing chick retinotectal system of Bravo, a neural surface protein: experimental modulation by environmental cues. J. Cell Biol. 11:3087–3096.

    Article  Google Scholar 

  • Desmond, N. L., and Levy, W. B. (1986a). Changes in the numerical density of synaptic contacts with long-term potentiation in the hippocampal dentate gyrus. J. Comp. Neurol. 253:466–475.

    PubMed  Google Scholar 

  • Desmond, N. L., and Levy, W. B. (1986b). Changes in the postsynaptic density with long-term potentiation in the dentate gyrus. J. Comp. Neurol. 253:476–482.

    PubMed  Google Scholar 

  • Desmond, N. L., and Levy, W. B. (1990). Morphological correlates of long-term potentiation imply the modification of existing synapses, not synaptogenesis, in the hippocampal dentate gyrus. Synapse 5:139–143.

    PubMed  Google Scholar 

  • Doherty, P., and Walsh, F. S. (1992). Cell adhesion molecules, second messengers and axonal growth. Curr. Opin. Neurobiol. 2:595–601.

    Article  PubMed  Google Scholar 

  • Doherty, P., Cohen, J., and Walsh, F. S. (1990). Neurite outgrowth in response to transfected N-CAM changes during development and is modulated by polysialic acid. Neuron 5:209–219.

    Article  PubMed  Google Scholar 

  • Doherty, P., Ashton, S. V., Moore, S. E., and Walsh, F. S. (1991). Morphoregulatory activities of NCAM and N-cadherin can be accounted for by G protein-dependent activation of L-and N-type neuronal Ca2+ channels. Cell 67:21–33.

    Article  PubMed  Google Scholar 

  • Doherty, P., Fazeli, M. S., and Walsh, F. S. (1995). The neural cell adhesion molecule and synaptic plasticity. J. Neurobiol. 26:437–446.

    PubMed  Google Scholar 

  • Doyle, E., Nolan, P. M., Bell, B., and Regan, C. M. (1992a). Intraventricular infusions of anti-neural cell adhesion molecules in a discrete posttraining period impair consolidation of a passive avoidance response in the rat. J. Neurochem. 59:1570–1573.

    PubMed  Google Scholar 

  • Doyle, E., Nolan, P. M., Bell, R., and Regan, C. M. (1992b). Hippocampal NCAM180 transiently increases sialyation during the acquisition and consolidation of a passive avoidance response in the adult rat. J. Neurosci. Res. 31:513–523.

    PubMed  Google Scholar 

  • Edelman, G. M., and Crossin, K. L. (1991). Cell adhesion molecules: implications for a molecular histology. Annu. Rev. Biochem. 60:155–190.

    Article  PubMed  Google Scholar 

  • Edwards, F. A. (1995). Anatomy and electrophysiology of fast central synapses lead to a structural model for long-term potentiation. Physiol. Rev. 75:759–787.

    PubMed  Google Scholar 

  • Fazeli, M. S., Breen, K., Errington, M. L., and Bliss, T. V. P. (1994). Increase in extracellular NCAM and amyloid precursor protein following induction of long-term potentiation in the dentate gyrus of anaesthetized rats. Neurosci. Lett. 169:77–80.

    Article  PubMed  Google Scholar 

  • Fields, R. D., and Itoh, K. (1996). Neural cell adhesion molecules in activity-dependent development and synaptic plasticity. TINS 19:473–483.

    PubMed  Google Scholar 

  • Fischer, G., Kunemund, V., and Schachner, M. (1986). Neurite outgrowth patterns in cerebellar microexplant cultures are affected by antibodies to the cell surface glycoprotein L1. J. Neurosci. 6:605–612.

    PubMed  Google Scholar 

  • Fox, G. B., O'Connell, A. W., Murphy, K. J., and Regan, C. M. (1995). Memory consolidation induces a transient and time-dependent increase in the frequency of neural cell adhesion molecule polysialylated cells in the adult rat hippocampus. J. Neurochem. 65:2796–2799.

    PubMed  Google Scholar 

  • Fujii, S., Saito, K., Miyakawa, H., Ito, K., and Kato, H. (1991). Reversal of long-term potentiation (depotentiation) induced by tetanus stimulation of the input to CA1 neurons of guinea pig hippocampal slices. Brain Res. 555:112–122.

    Article  PubMed  Google Scholar 

  • Geinisman, Y., deToledo-Morell, L., Morrell, F., Heller, R. E., Rossi, M., and Parshall, R. F. (1993). Structural synaptic correlates of long-term potentiation: Formation of axospinous synapses with multiple, completely partitioned transmission zones. Hippocampus 3:435–556.

    PubMed  Google Scholar 

  • Geinisman, Y., deToledo-Morell, L., Morrell, F., Persina, I. S., and Beatty, M. A. (1996). Synapse restructuring associated with the maintenance phase of hippocampal long-term potentiation. J. Comp. Neurol. 368:413–423.

    PubMed  Google Scholar 

  • Goridis, C., and Brunet, J. F. (1992). NCAM: Structural diversity, function and regulation of expression. Semin. Cell Biol. 3:189–197.

    PubMed  Google Scholar 

  • Grooms, S. Y., Terracio, L., and Jones, L. S. (1993). Anatomical localization of β1 integrin-like immunoreactivity in rat brain. Exp. Neurol. 122:253–259.

    Article  PubMed  Google Scholar 

  • Grumet, M., Hoffman, S., Chuong, C.-M., and Edelman, G. M. (1984). Polypeptide components and binding functions of neuron-glia cell adhesion molecules. Proc. Natl. Acad. Sci. USA 81:7989–7993.

    PubMed  Google Scholar 

  • Grumet, M., Mauro, V., Burgoon, M. P., Edelman, G. M., and Cunningham, B. A. (1991). Structure of a new nervous system glycoprotein, Nr-CAM, and its relationship to subgroups of neural cell adhesion molecules. J. Cell Biol. 113:1399–1412.

    Article  PubMed  Google Scholar 

  • Gustafsson, B., Asztely, F., Hanse, E., and Wigstrom, H. (1989). Onset characteristics of long-term potentiation in the guinea pig hippocampal CA1 region in vitro. Eur. J. Neurosci. 1:382–394.

    PubMed  Google Scholar 

  • Hall, R. A., Kessler, M., and Lynch, G. (1992). Evidence that high-and low-affinity AMPA binding sites reflect membrane-dependent states of a single receptor. J. Neurochem. 59:1997–2004.

    PubMed  Google Scholar 

  • Hall, R. A., Quan, A., Kessler, M., and Lynch, G. (1996). Ultraviolet radiation, thiol reagents, and solubilization enhance AMPA receptor binding affinity via a common mechanism. Neurochem. Res. 21:969–974.

    PubMed  Google Scholar 

  • Harris, E. W., Ganong, A. H., and Cotman, C. W. (1984). Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors. Brain Res. 323:132–137.

    Article  PubMed  Google Scholar 

  • Heidemann, S. R. (1993). A new twist on integrins and the cytoskeleton. Science 260:1080–1081.

    PubMed  Google Scholar 

  • Hoffman, K. B., Kessler, M., and Lynch, G. (1997). Sialic acid residues indirectly modulate the binding properties of AMPA-type glutamate receptors. Brain Res. 753:309–314.

    Article  PubMed  Google Scholar 

  • Hoffman, K. B., Kessler, M., Ta, J., Lam, L., and Lynch, G. (1998). Mannose-specific lectins modulate ligand binding to AMPA-type glutamate receptors. Brain Res. 795:105–111.

    Article  PubMed  Google Scholar 

  • Hoffman, S., and Edelman, G. M. (1983). Kinetics of homophilic binding by embryonic and adult forms of the neural cell adhesion molecule. Proc. Natl. Acad. Sci. USA 80:5762–5766.

    PubMed  Google Scholar 

  • Honore, T., and Nielsen, M. (1985). Complex structure of quisqualate-sensitive glutamate receptors in rat cortex. Neurosci. Lett. 54:27–32.

    PubMed  Google Scholar 

  • Horstkorte, R., Schachner, M., Magyar, J. P., Vorherr, T., and Schmitz, B. (1993). The fourth immunoglobulin-like domain of NCAM contains a carbohydrate recognition domain for oligomannosidic glycans implicated in association with L1 and neurite outgrowth. J. Cell Biol. 121:1409–1421.

    Article  PubMed  Google Scholar 

  • Hortsch, M. (1996). The L1 family of neural cell adhesion molecules: old proteins performing new tricks. Neuron 17:587–593.

    Article  PubMed  Google Scholar 

  • Hynes, R. O. (1992). Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 69:11–25.

    Article  PubMed  Google Scholar 

  • Itoh, K., Stevens, B., Schachner, M., and Fields, R. D. (1995). Regulated expression of the neural cell adhesion molecule L1 by specific patterns of neural impulses. Science 270:1369–1372.

    PubMed  Google Scholar 

  • Izquierdo, I., and Medina, J. H. (1995). Correlation between the pharmacology of long-term potentiation and the pharmacology of memory. Neurobiol. Learn. Memory 63:19–32.

    Article  Google Scholar 

  • Jacque, C., Jorgensen, O. S., and Bock, E. (1974). Quantitative studies of the brain specific antigen S-100, GFA, 14-3-2, D1, D2, D3 and C1 in quaking mouse. FEBS Lett. 49:264–266.

    Article  PubMed  Google Scholar 

  • Jacque, C. M., Jorgensen, O. S., Baumann, N. A., and Bock, E. (1976a). Brain specific antigens in the quaking mouse during ontogeny. J. Neurochem. 27:905–909.

    PubMed  Google Scholar 

  • Jacque, C. M., Baumann, N. A., and Bock, E. (1976b). Quantitative studies of the brain specific antigens GFA, 14-3-2, synaptin—C1, D1, D2, D3 and D5 in Jimpy mouse. Neurosci. Lett. 3:41–44.

    Article  Google Scholar 

  • Jones, L. S. (1996). Integrins: Possible functions in the adult CNS. TINS 19:68–72.

    PubMed  Google Scholar 

  • Jorgensen, O. S., and Bock, E. (1974). Brain specific synaptosomal membrane proteins demonstrated by crossed immunoelectrophoresis. J. Neurochem. 23:879–880.

    PubMed  Google Scholar 

  • Jorgensen, O. S., and Bock, E. (1975). Synaptic plasma membrane antigen D2 measured in human cerebrospinal fluid by rocket-line immunoelectrophoresis. Determination in psychiatric and neurological patients. Scand. J. Immunol. 4:25–30.

    PubMed  Google Scholar 

  • Jorgensen, O. S., Bock, E., Beck, P., and Rafaelsen, O. J. (1977). Synaptic membrane protein D2 in the cerebrospinal fluid of manic-melancholic patients. Acta. Psychiat. Scand. 56:50–56.

    PubMed  Google Scholar 

  • Jorgensen, O. S. (1995). Neural cell adhesion molecule (NCAM) as a quantitative marker is synaptic remodeling. Neurochem. Res. 20:533–547.

    PubMed  Google Scholar 

  • Jung, M. W., Larson, J., and Lynch, G. (1991). Evidence that changes in spine neck resistance are not responsible for expression of LTP. Synapse 7:216–220.

    PubMed  Google Scholar 

  • Kadom, G., Kowitz, A., Altevogt, P., and Schachner, M. (1990). Functional cooperation between the neural cell adhesion molecules L1 and N-CAM is carbohydrate dependent. J. Cell Biol. 110:209–218.

    Article  PubMed  Google Scholar 

  • Kayyem, J. F., Roman, J. M., de la Rosa, E. J., Schwarz, U., and Dreyer, W. J. (1992). Bravo/Nr-CAM is closely related to the cell adhesion molecules L1 and Ng-CAM and has similar heterodimer structure. J. Cell Biol. 118:1259–1270.

    Article  PubMed  Google Scholar 

  • Kobiler, D., Fuchs, S., and Samuel, D. (1976). The effect of antisynaptosomal plasma membrane antibodies on memory. Brain Res. 115:129–138.

    Article  PubMed  Google Scholar 

  • Koch, C., and Poggio, T. (1983a). Electrical properties of dendritic spines. TINS 6:80–83.

    Google Scholar 

  • Koch, C., and Poggio, T. (1983b). A theoretical analysis of electrical properties of spines. Proc. Roy. Soc. Lond. 218:455–477.

    Google Scholar 

  • Kolta, A., Lynch, G., and Ambros-Ingerson, J. (1998). Effects of antiracetam after LTP induction are suggestive of interactions on the kinetics of the AMPA receptor channel. Brain Res. 788:269–286.

    Article  PubMed  Google Scholar 

  • Larson, J., and Lynch, G. (1986). Induction of synaptic potentiation in hippocampus by patterned stimulation involves two events. Science 232:985–988.

    PubMed  Google Scholar 

  • Larson, J., and Lynch, G. (1988). Role of N-Methyl-D-Aspartate receptors in the induction of synaptic potentiation by burst stimulation patterned after the hippocampal theta rhythm. Brain Res. 441:111–118.

    Article  PubMed  Google Scholar 

  • Larson, J., and Lynch, G. (1991). A test of the spine resistance hypothesis for LTP expression. Brain Res. 538:347–350.

    Article  PubMed  Google Scholar 

  • Larson, J., Xiao, P., and Lynch, G. (1993). Reversal of LTP by theta frequency stimulation. Brain Res. 600:697–702.

    Article  Google Scholar 

  • Lee, K. S., Schottler, F., Oliver, M., and Lynch, G. (1980). Brief bursts of high-frequency stimulation produce two types of structural change in rat hippocampus. Neurophysiology 44:247–258.

    PubMed  Google Scholar 

  • Lee, K., Oliver, M., Schottler, F., and Lynch, G. (1981). Electron microscopic studies of brain slices: The effects of high frequency stimulation on dendritic ultrastructure. In Kerkut, G., and Wheal, H. V. (eds.), Electrical Activity in Isolated Mammalian C.N.S. Preparations, Academic Press, New York, pp. 189–212.

    Google Scholar 

  • Linnemann, D., and Bock, E. (1989). Cell adhesion molecules in neural development. Dev. Neurosci. 11:149–173.

    PubMed  Google Scholar 

  • Lomo, T. (1966). Frequency potentiation of excitatory synaptic activity in the dentate area of the hippocampal formation. Acta Physiol. Scand. 68:128.

    Google Scholar 

  • Luthi, A., Parent, J.-P., Figurov, D., Muller, D., and Schachner, M. (1994). Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM. Nature 372:777–779.

    Article  PubMed  Google Scholar 

  • Luthi, A., Mohajeri, H., Schachner, M., and Laurent, J.-P. (1996). Reduction of hippocampal long-term potentiation in transgenic mice ectopically expressing the neural cell adhesion molecule L1 in astrocytes. J. Neurosci. Res. 46:1–6.

    Article  PubMed  Google Scholar 

  • Lynch, G., Larson, J., Staubli, U., and Granger, R. (1991a). Variants of synaptic potentiation and different types of memory operations in hippocampus and related structures. In Squire, L. R., Weinberger, N. M., Lynch, G., and McGaugh, J. L. (eds.), Memory: Organization and Locus of Change, Oxford University Press, New York, pp. 330–363.

    Google Scholar 

  • Lynch, G., Bahr, B. A., and Vanderklish, P. W. (1991b). Induction and stabilization of long-term potentiation. In Ascher, P., Choi, D. W., and Christen, Y. (ed.), Glutamate Cell-Death and Memory, Springer-Verlag, Berlin/Heidelberg, pp. 45–60.

    Google Scholar 

  • Malenka, R. C. (1991). Postsynaptic factors control the duration of synaptic enhancement in area CA1 of the hippocampus. Neuron 6:53–60.

    Article  PubMed  Google Scholar 

  • Maren, S., and Baudry, M. (1995). Properties and mechanisms of long-term synaptic plasticity in the mammalian brain: Relationships to learning and memory. Neurobiol. Learn. Memory 63:1–18.

    Article  Google Scholar 

  • Mayer, M. L., and Vyklicky, L., Jr. (1989). Concanavalin A selectively reduces desensitization of mammalian neuronal quisqualate receptors. Proc. Natl. Acad. Sci. USA 86:1411–1415.

    PubMed  Google Scholar 

  • Mayford, M., Barzilai, A., Keller, F., Schacher, M., and Kandel, E. (1992). Modulation of an NCAM-related adhesion molecule with long-term synaptic plasticity in Aplysia. Science 256:638–644.

    PubMed  Google Scholar 

  • Montgomery, A. M. P., Becker, J. C., Chi-Hung Siu, Lemmon, V. P., Cheresh, D. A., Pancook, J. D., Zhao, X., and Reisfeld, R. A. (1996). Human neural cell adhesion molecule L1 and rat homologue NILE are ligands for integrin αvβy. J. Cell Biol. 132:475–485.

    Article  PubMed  Google Scholar 

  • Muller, D., and Lynch, G. (1988). Long-term potentiation differentially affects two components of synaptic responses in hippocampus. Proc. Natl. Acad. Sci. USA 85:9346–9350.

    PubMed  Google Scholar 

  • Muller, D., Wang, C., Skibo, G., Toni, N., Cremer, H., Calaora, V., Rougon, G., and Kiss, J. Z. (1996). PSA-NCAM is required for activity-induced synaptic plasticity. Neuron 17:413–422.

    Article  PubMed  Google Scholar 

  • Murphy, K. J., O'Connell, A. W., and Regan, C. M. (1996). Repetitive and transient increases in hippocampal neural cell adhesion molecule polysialylation state following multitrail spatial training. J. Neurochem. 67:1268–1274.

    PubMed  Google Scholar 

  • O'Connell, C., O'Malley, A., and Regan, C. M. (1997). Transient, learning-induced ultrastructural change in spatially-clustered dentate granule cells of the adult rat hippocampus. Neuroscience 76:55–62.

    Article  PubMed  Google Scholar 

  • Pavalko, F. M., Otey, C. A., Simon, K. O., and Burridge, K. (1991). Alpha-actinin: A direct link between actin and integrins. Biochem. Soc. Trans. 19:1065–1069.

    PubMed  Google Scholar 

  • Persohn, E., Pollerberg, G. E., and Schachner, M. (1989). Immunoelectron-microscopic localization of the 180 kD component of the neural cell adhesion molecule N-CAM in postsynaptic membranes. Comp. Neurol. 288:92–100.

    Google Scholar 

  • Pollerberg, E., Burridge, K., Krebs, S., Goodman, S., and Schachner, M. (1987). The 180 kD component of the neural cell adhesion molecule N-CAM is involved in cell-cell contacts and cytoskeleton-membrane interactions. Cell Tissue Res. 250:227–236.

    Article  PubMed  Google Scholar 

  • Rall, W. (1974). Dendritic spines, synaptic potency and neuronal plasticity. In Woody, C. D., Brown, K. A., Crow, T. J., Jr., and Knispel, J. D. (eds.), Cellular Mechanisms Subserving Changes in Neuronal Activity, University of California Press, Los Angeles, 1974, pp. 13–21.

    Google Scholar 

  • Rathjen, F. G., and Schachner, M. (1984). Immunocytological and biochemical characterization of a new neuronal cell surface component (L1 antigen) which is involved in cell adhesion. EMBO J. 3:1–10.

    PubMed  Google Scholar 

  • Regan, C. M. (1991). Regulation of neural cell adhesion molecule sialyation state. Int. J. Biochem. 23:513–523.

    Article  PubMed  Google Scholar 

  • Ronn, L. C. B., Bock, E. Linnemann, D., and Jahnsen, H. (1995). NCAM antibodies modulate induction of long-term potentiation in rat hippocampal CA1. Brain Res. 677:145–151.

    Article  PubMed  Google Scholar 

  • Rosales, C., and Juliano, R. L. (1995). Signal transduction by cell adhesion receptors in leukocytes. J. Leukocyte Biol. 57:189–198.

    PubMed  Google Scholar 

  • Rose, S. P. (1995). Glycoproteins and memory formation. Behav. Brain Res. 66:73–78.

    Article  PubMed  Google Scholar 

  • Ruoslahti, E., and Pierschbacher, M. D. (1987). New perspectives in cell adhesion: RGD and integrins. Science 238:491–497.

    PubMed  Google Scholar 

  • Ruppert, M., Aigner, S., Hubbe, M., Yagita, H., and Altevogt, P. (1995). The L1 adhesion molecule is a cellular ligand for VLA-5. J. Cell Biol. 131:1881–1891.

    Article  PubMed  Google Scholar 

  • Rutishauser, U. (1992). NCAM and its polysialic acid moiety: A mechanism for pull/push regulation of cell interactions during development? Development Suppl. 99–104.

  • Rutishauser, U., and Landmesser, L. (1996). Polysialic acid in the vertebrate nervous system: A promoter of plasticity in cell-cell interactions. Trends Neurosci. 19:422–427.

    PubMed  Google Scholar 

  • Rutishauser, U., Theiry, J. P., Brackenbury, R., Sela B. A., and Edelman, G. M. (1976). Mechanisms of adhesion among cells from neural tissues of the chick embryo. Proc. Natl. Acad. Sci. USA 73:577–581.

    PubMed  Google Scholar 

  • Rutishauser, U., Hoffman, S., and Edelman, G. M. (1982). Binding properties of a cell adhesion molecule from neural tissue. Proc. Natl. Acad. Sci. USA 79:685–689.

    PubMed  Google Scholar 

  • Rutishauser, U., Acheson, A., Hall, A. K., Mann, D. M., and Sunshine, J. (1988). The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions. Science 240:53–57.

    PubMed  Google Scholar 

  • Sadoul, R., Hirn, M., Deagostini-Bazin, H., Rougon, G., and Goridis, C. (1983). Adult and embryonic mouse neural cell adhesion molecules have different binding properties. Nature 304:347–349.

    PubMed  Google Scholar 

  • Salton, S. R. J., Richter-Landsberg, C., Greene, L. A., and Shelanski, M. L. (1983). Nerve growth factor-inducible large external (NILE) glycoprotein: Studies of a central and peripheral neuronal marker. J. Neurosci. 3:441–454.

    PubMed  Google Scholar 

  • Scholey, A. B., Rose, S. P. R., Zamani, M. R., Bock, E., and Schachner, M. (1993). A role for the neural cell adhesion molecule in a late, consolidating phase of glycoprotein synthesis 6 hours following passive avoidance training of the young chick. Neuroscience 52:393–401.

    Article  PubMed  Google Scholar 

  • Schuster, C. M., Davis, G. W., Fetter, R. D., and Goodman, C. S. (1996). Genetic dissection of structural and functional components of synaptic plasticity. II. Fasciclin II controls presynaptic structural plasticity. Neuron 17:655–667.

    Article  PubMed  Google Scholar 

  • Seki, T., and Arai, Y. (1993). Distribution and possible roles of the highly polysialyated neural cell adhesion molecule (NCAM-H) in the developing and adult central nervous system. Neurosci. Res. 17:265–290.

    Article  PubMed  Google Scholar 

  • Staubli, U. (1995). Parallel properties of long-term potentiation and memory. In McGaugh, J., Weinberger, N., and Lynch, G. (eds.), Brain and Memory: Modulation and Mediation of Neuroplasticity, 1995, pp. 303–318.

  • Staubli, U., and Lynch, G. (1987). Stable hippocampal long-term potentiation elicited by “theta” pattern stimulation. Brain Res. 435:227–234.

    Article  PubMed  Google Scholar 

  • Staubli, U., Vanderklish, P., and Lynch, G. (1990). An inhibitor of integrin receptors blocks long-term potentiation. Behav. Neural Biol. 53:1–5.

    PubMed  Google Scholar 

  • Staubli, U., Rogers, G., and Lynch, G. (1994). Facilitation of glutamate receptors enhances memory. Proc. Natl. Acad. Sci. USA 91:777–781.

    PubMed  Google Scholar 

  • Thiery, J.-P., Brackenbury, R., Rutishauser, U., and Edelman, G. M. (1977). Adhesion among neural cells of the chick embryo. J. Biol. Chem. 252:6841–6845.

    PubMed  Google Scholar 

  • Thio, L. L., Clifford, D. B., and Zorumski, C. F. (1992a). Blockade of ionotropic quisqualate receptor desensitization by wheat germ agglutinin in cultured postnatal rat hippocampal neurons. J. Neurophys. 68:1917–1929.

    Google Scholar 

  • Thio, L. L., Clark, G. D., Clifford, D. B., and Zorumski, C. F. (1992b). Wheat germ agglutinin enhances EPSCs in cultured postnatal rat hippocampal neurons by blocking ionotropic quisqualate receptor desensitization. J. Neurophys. 68:1930–1938.

    Google Scholar 

  • Vyklicky, L., Jr., Patneau, D. K., and Mayer, M. L. (1991). Modulation of excitatory synaptic transmission by drugs that reduce desensitization at AMPA/kainate receptors. Neuron 7:971–984.

    Article  PubMed  Google Scholar 

  • Wang, N., Butler, J. P., and Ingber, D. E. (1993). Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127.

    PubMed  Google Scholar 

  • Wenzel, J., Kammerer, E., Kirsche, W., Matthies, H., and Wenzel, M. (1980). Electron microscopic and morphometric studies on synaptic plasticity in the hippocampus of the rat following conditioning. J. Hirnforschung 21:647–654.

    Google Scholar 

  • Xiao, P., Bahr, B. A., Staubli, U., Vanderklish, P. W., and Lynch, G. (1991). Evidence that matrix recognition contributes to stabilization but not induction of LTP. Neuroreport 2:461–464.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffman, K.B. The Relationship Between Adhesion Molecules and Neuronal Plasticity. Cell Mol Neurobiol 18, 461–475 (1998). https://doi.org/10.1023/A:1026371124366

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026371124366

Navigation