Skip to main content
Log in

Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Fifteen aquatic environments (lakes, lagoons and rivers) of glacial origin in the northern Andean Patagonia (Argentina) were surveyed for the occurrence of red yeasts. Subsurface water samples were filtered and used for colony counting and yeast isolation. A preliminary quantitative analysis indicated that total yeast counts ranged between 0 and 250 cells l−1. A polyphasic approach including physiological and molecular methods was used for the identification of 64 carotenogenic yeast strains. The molecular characterisation of the isolates was based on the mini/microsatellite-primed PCR technique (MSP-PCR) employing the (GTG)5 and the M13 primers. Comparison of representative fingerprints of each group with those of the type strains of pigmented yeasts allowed the expeditious identification of 87.5% isolates. The sequence analysis of the D1/D2 domains of the 26S rDNA was employed to confirm identifications and in the characterization of the unidentified MSP-PCR groups. Teleomorphic yeast species were detected by performing sexual compatibility assays. The isolates corresponded to 6 genera and 15 yeast species, including four new yeast species of the genera Cryptococcus (1), Rhodotorula (1) and Sporobolomyces (2). Rhodotorula mucilaginosa was found in the majority of the samples and represented ca. 50% of the total number of isolates. However, this yeast was not detected in aquatic environments with very low anthropic influence. Other frequent yeast isolates were teleomorphic yeast species of Rhodosporidium babjevae, R. kratochvilovae and Sporidiobolus salmonicolor. This study represents the first report on red yeast occurrence and biodiversity in northwestern Patagonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnett J.A., Payne R.W. and Yarrow D. 2000.Yeasts: Characteristics and Identification. 3rd edn. Cambridge University Press, Cambridge.

    Google Scholar 

  • Bhosale P. and Gadre R.V. 2001. Optimization of carotenoid production from hyper-producing Rhodotorula glutinis mutant 32 by a factorial approach. Lett. Appl. Microbiol. 33: 12–16.

    Article  PubMed  CAS  Google Scholar 

  • Boguslawska-Was E. and Dabrowski W. 2001. The seasonal variability of yeasts and yeast-like organisms in water and bottom sediment of the Szczecin Lagoon. Int. J. Hyg. Environ. Health 203: 451–458.

    Article  PubMed  CAS  Google Scholar 

  • Brizzio S. and van Broock M. 1998. Characterization of wild yeast from Nahuel Huapi National Park (Patagonia, Argentina. J. Food Technol. Biotechnol. 4: 273–278.

    Google Scholar 

  • Buzzini P. 2000. An optimization study of carotenoid production by Rhodotorula glutinis DBVPG 3853 from substrates containing concentrated rectified grape must as the sole carbohydrate source. J. Ind. Microbiol. Biotechnol. 24: 41–45.

    Article  CAS  Google Scholar 

  • Dýaz M., Pedrozo F. and Baccala N. 2000. Summer classification of Southern Hemisphere temperate lakes (Patagonia, Argentina. Lakes Reservoirs 5: 213–229.

    Article  Google Scholar 

  • Dimitri M.J. 1982. Flora Dendrologica y Cultivada. In: La region de los bosques andino patagonicos. Tomo II. Secretaria de Agricultura y Ganaderýa de la Nacion. Instituto Nacional de Tecnologýa Agropecuaria, Bs. As., Argentina.

    Google Scholar 

  • Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791.

    Article  Google Scholar 

  • Gadanho M. and Sampaio J.P. 2002. Polyphasic taxonomy of the basidiomycetous yeast genus Rhodotorula: Rh. glutinis sensu stricto and Rh. dairenensis comb. nov. FEMS Yeast Res. 2: 47–58.

    PubMed  CAS  Google Scholar 

  • Gadanho M. and Almeida J.M.G.C.F. Sampaio J.P. 2003. Assessment of yeast diversity in a marine environment in the south of Portugal by microsatellite-primed PCR. Anton. Leeuw. Int. J. G. (in press).

  • Gadanho M., Sampaio J.P. and Spencer-Martins I. 2001. Polyphasic taxonomy of the basidiomycetous yeast genus Rhodosporidium: R azoricum sp. nov. Can. J. Microbiol. 47: 213–221.

    Article  PubMed  CAS  Google Scholar 

  • Hagler A.N. and Ahearn D.G. 1987. Ecology of aquatic yeasts. In: Rose A.H. and Harrison J.S. (eds), The Yeasts Vol. vol. 1. Academic Press, London, UK, pp. 181–205.

    Google Scholar 

  • Hagler A.N. and Mendonça-Hagler L.C. 1981. Yeasts from marine and estuarine waters with different levels of pollution in the state of Rio de Janeiro, Brazil. Appl. Environ. Microbiol. 41: 173–178.

    PubMed  Google Scholar 

  • Herzberg M., Fischer R. and Titze A. 2002. Conflicting results obtained by RAPD-PCR and large-subunit rDNA sequences in determining and comparing yeast strains isolated from flowers: a comparison of two methods. Int. J. Syst. Evol. Microbiol. 52: 1423–1433.

    Article  PubMed  CAS  Google Scholar 

  • Meyer W., Mitchell T.G., Freedman E.Z. and Vilgalys R. 1993. Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans. J. Clin. Microbiol. 31: 2274–2280.

    PubMed  CAS  Google Scholar 

  • Nelis H.J. and De Leenheer A.P. 1991. Microbial sources of supcarotenoid pigments used in foods and feeds. J. Appl. Bacteriol. 70: 181–191.

    CAS  Google Scholar 

  • Quiros R. and Drago E. 1985. Relaciones entre variables fýsicas, morfometricas y climaticas en lagos patagonicos. Rev. Asoc. Cs. Nat. Litoral 16: 181–199.

    Google Scholar 

  • Rosa C.A., Resende M.A., Barbosa F.A.R., Morais P.B. and Franzot S.R. 1995.Yeast diversity in a mesotrophic lake on the karstic plateau of Lagoa Santa, MG-Brazil. Hydrobiologia 308: 103–108.

    Google Scholar 

  • Sampaio J.P., Gadanho M., Santos S., Duarte F., Pais C., Fonseca A. et al. 2001a. Polyphasic taxonomy of the genus Rhodosporidium: R. kratochvilovae and related anamorphic species. Int. J. Syst. Evol. Microbiol 51: 687–697.

    PubMed  CAS  Google Scholar 

  • Sampaio J.P., Gadanho M. and Bauer R. 2001b. Taxonomic studies the genus Cystofilobasidium: description of Cystofilobasidium ferigula sp. nov. and clarification of the status of Cystofilobasidium lari-marini. Int. J. Syst. Evol. Microbiol. 51: 221–229.

    PubMed  CAS  Google Scholar 

  • Simard R.E. and Blackwood A.C. 1971a. Ecological studies on yeasts in the St. Lawrence River. Can. J. Microbiol. 17: 353–357.

    PubMed  CAS  Google Scholar 

  • Simard R.E. and Blackwood A.C. 1971b. Yeasts from the St. Lawrence River. Can. J. Microbiol. 17: 197–203.

    Article  PubMed  CAS  Google Scholar 

  • Simberloff D., Relva M.A. and Nunez M. 2002. Gringos en el bosque: introduced tree invasion in a natural Nothofagus/Austrocedrus forest. Biol. Invasions 4: 35–53.

    Article  Google Scholar 

  • Slavikova E. and Vadkertiova R. 1997. Seasonal occurrence of yeasts and yeast-like organisms in the river Danube. Anton. Leeuw. Int. J. G. 72: 77–80.

    Article  CAS  Google Scholar 

  • Slavikova E., Vadkertiova R. and Kockova-Kratochvýlova A. 1992. Yeasts isolated from artificial lake waters. Can. J. Microbiol. 38: 1206–1209.

    Article  Google Scholar 

  • Swofford D.L. 2000. PAUP*. Phylogenetic Analysis Using Paron simony (*and Other Methods). Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Yarrow D. 1998. Methods for the isolation, maintenance and identification of yeasts. In: Kurtzman C.P. and Fell J.W. (eds), The Yeasts: A Taxonomic Study. Elsevier Science Publishers, Amsterdam, pp. 77–100.

    Google Scholar 

  • Zhao J.-H., Bai F.-Y., Guo L.-D. and Jia J.-H. 2002. Rhodotorula pinicola sp. nov., a basidiomycetous yeast species isolated from xylem of pine twigs. FEMS Yeast Res. 2: 159–163.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Libkind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Libkind, D., Brizzio, S., Ruffini, A. et al. Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina. Antonie Van Leeuwenhoek 84, 313–322 (2003). https://doi.org/10.1023/A:1026058116545

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026058116545

Navigation