Skip to main content
Log in

Presynaptic Frequency- and Pattern-Dependent Filtering

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Dual intracellular recordings from pairs of synaptically connected neurones have demonstrated that the frequency-dependent pattern of transmitter release varies dramatically between different classes of connections. Somewhat surprisingly, these patterns are not determined by the class of neurone supplying the axon alone, but to a large degree by the class of postsynaptic neurone. A wide range of presynaptic mechanisms, some that depress the release of transmitter and others that enhance release have been identified. It is the selective expression of these different mechanisms that determines the unique frequency- and pattern-dependent properties of each class of connection. Although the molecular interactions underlying these several mechanisms have yet to be fully identified, the wealth and complexity of the protein-protein and protein-lipid interactions that have been shown to control the release of transmitter suggest many ways in which the properties of a synapse may be tuned to respond to particular patterns and frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aertsen A, Diesmann M, Gewaltig MO, Grun S, Rotter S (2001) Neural dynamics in cortical networks-Precision of joint-spiking events. Novartis Found Symp. 239: 193-204.

    PubMed  Google Scholar 

  • Ali AB, Thomson AM (1998) Facilitating pyramid to horizontal oriens-alveus interneurone inputs: Dual intracellular recordings in slices of rat hippocampus. J. Physiol. 507: 185-199.

    Article  PubMed  Google Scholar 

  • Ali AB, Deuchars J, Pawelzik H, Thomson AM (1998) CA1 pyramidal to basket and bistratified cell EPSPs: Dual intracellular recordings in rat hippocampal slices. J. Physiol. 507: 201-217.

    Article  PubMed  Google Scholar 

  • Aravamudan B, Fergestad T, Davis WS, Rodesch CK, Broadie K (1999) Drosophila UNC-13 is essential for synaptic transmission. Nat. Neurosci. 2: 965-971.

    Article  PubMed  Google Scholar 

  • Atwood HL, Karunanithi S (2002) Diversification of synaptic strength: Presynaptic elements. Nature Reviews Neuroscience 3: 497-516.

    Article  PubMed  Google Scholar 

  • Atwood HL, Wojtowicz JM (1999) Silent synapses in neural plasticity: Current evidence. Learn Mem. 6: 542-571.

    Article  PubMed  Google Scholar 

  • Augustin I, Korte S, Rickmann M, Kretzschmar HA, Südhof TC, Herms JW, Brose N (2001). The cerebellum-specific Munc13 isoform Munc13-3 regulates cerebellar synaptic transmission and motor learning in mice. J. Neurosci. 21: 10-17.

    PubMed  Google Scholar 

  • Augustin I, Rosenmund C, Südhof TC, Brose N (1999) Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400(6743): 457-461.

    Article  PubMed  Google Scholar 

  • Augustine GJ, Burns ME, DeBello WM, Hilfiker S, Morgan JR, Schweizer FE, Tokumaru H, Umayahara K (1999b) Proteins involved in synaptic vesicle trafficking. J. Physiol. 520: 33-41.

    Article  PubMed  Google Scholar 

  • Augustine GJ, Burns ME, DeBello WM, Hilfiker S, Morgan JR, Schweizer FE, Tokumaru H, Umayahara K (1999) Proteins involved in synaptic vesicle trafficking. J. Physiol. 520: 33-41.

    Article  PubMed  Google Scholar 

  • Augustine GJ (2001) How does calcium trigger neurotransmitter release? Curr Opin Neurobiol. 11: 320-326.

    Article  PubMed  Google Scholar 

  • Augustine GJ, Charlton MP, Smith SJ (1985) Calcium entry and transmitter release at voltage-clamped nerve terminals of the squid. J. Physiol. 367: 163-181.

    PubMed  Google Scholar 

  • Balnave RJ, Gage PW (1974) On facilitation of transmitter release at the toad neuromuscular junction. J. Physiol. 239: 657-675.

    PubMed  Google Scholar 

  • Becher A, Drenckhahn A, Pahner I, Margittai M, Jahn R, Ahnert-Hilger G (1999) The synaptophysin-synaptobrevin complex: A hallmark of synaptic vesicle maturation. J. Neurosci. 19: 1922-1931.

    PubMed  Google Scholar 

  • Biederer T, Südhof TC (2000) Mints as adaptors. Direct binding to neurexins and recruitment of munc18. J. Biol. Chem. Dec. 22; 275(51): 39803-39806.

    Article  PubMed  Google Scholar 

  • Biederer T, Südhof TC (2001) CASK and protein 4.1 support F-actin nucleation on neurexins. J. Biol. Chem. 276: 47869-47876.

    PubMed  Google Scholar 

  • Benfenati F, Onofri F, Giovedí S (1999) Protein-protein interactions and protein modules in the control of transmitter release. Phil. Trans. Roy. Soc. B. 354: 243-257.

    Article  Google Scholar 

  • Benfenati F, Onofri F, Giovedí S (1999) Protein-protein interactions and protein modules in the control of transmitter release. Phil. Trans. Roy. Soc. B. 354: 243-257.

    Article  Google Scholar 

  • Bergsman JB, Tsien RW (2000) Syntaxin modulation of calcium channels in cortical synaptosomes as revealed by botulinum toxin C1. J. Neurosci. 20: 4368-4378.

    PubMed  Google Scholar 

  • Betz WJ (1970). Depression of transmitter release at the neuromuscular junction of the frog. J. Physiol. 206: 620-644.

    Google Scholar 

  • Betz WJ, Angleson JK (1998) The synaptic vesicle cycle. Ann. Rev. Physiol. 60: 347-363.

    Article  Google Scholar 

  • Betz A, Thakur P, Junge HJ, Ashery U, Rhee JS, Scheuss V, Rosenmund C, Rettig J, Brose N (2001) Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron 30: 183-196.

    Article  PubMed  Google Scholar 

  • Bezprozvanny I, Zhong P, Scheller RH, Tsien RW (2000) Molecular determinants of the functional interaction between syntaxin and Ntype Ca2+ channel gating. Proc. Natl. Acad. Sci. USA. 97: 13943-13948.

    Article  PubMed  Google Scholar 

  • Bollmann JH, Sakmann B, Borst JGG (2000). Synaptic efficacy critically depends on the presynaptic intracellular calcium concentration ([Ca2+]i). Science 289: 953-957.

    Article  PubMed  Google Scholar 

  • Brose N, Rosenmund C, Rettig J (2000) Regulation of transmitter release by Unc-13 and its homologues. Curr. Opin. Neurobiol. 10: 303-311.

    Article  PubMed  Google Scholar 

  • Brumback AC, Zorec R, Betz WJ (2001) Integrins: The missing link. J. Physiol. 530: 181.

    Article  PubMed  Google Scholar 

  • Burns ME, Sasaki T, Takai Y, Augustine GJ (1998) Rabphilin-3A: A multifunctional regulator of synaptic vesicle traffic. J. Gen. Physiol. 111: 243-255.

    Article  PubMed  Google Scholar 

  • Burton JL, Burns ME, Gatti E, Augustine GJ, De Camilli P (1994) Specific interactions of Mss4 with members of the Rab GTPase subfamily. EMBO J. 13: 5547-5558.

    PubMed  Google Scholar 

  • Butz S, Okamoto M, Südhof TC (1998) A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 94: 773-782.

    Article  PubMed  Google Scholar 

  • Carlson CG, Jacklet JW (1986) The exponent of the calcium power function is reduced during steady-state facilitation in neuron R15 of Aplysia. Brain Res. 376: 204-207.

    Article  PubMed  Google Scholar 

  • Carr CM, Grote E, Munson M, Hughson FM, Novick PJ (1999) Sec1p binds to SNARE complexes and concentrates at sites of secretion. J. Cell. Biol. 146: 333-344.

    Article  PubMed  Google Scholar 

  • Castillo PE, Schoch S, Schmitz F, Südhof TC, Malenka RC (2002) RIM1alpha is required for presynaptic long-term potentiation. Nature 415(6869): 327-330.

    Article  PubMed  Google Scholar 

  • Chacron MJ, Longtin A, Maler L. (2001) Negative interspike interval correlations increase the neuronal capacity for encoding time-dependent stimuli. J. Neurosci. 21: 5328-5343.

    PubMed  Google Scholar 

  • Chance FS, Nelson SB, Abbott LF (1998) Synaptic depression and the temporal response characteristics of V1 cells. J. Neurosci. 18: 4785-4799.

    PubMed  Google Scholar 

  • Chen S, Zheng X, Schulze KL, Morris T, Bellen H, Stanley EF (2002) Enhancement of presynaptic calcium current by cysteine string protein. J. Physiol. 538: 383-389.

    Article  PubMed  Google Scholar 

  • Choi S, Klingauf J, Tsien RW (2000) Postfusional regulation of cleft glutamate concentration during LTP at "silent synapses’. Nat. Neurosci. 3: 330-336.

    Article  PubMed  Google Scholar 

  • Clary DO, Griff IC, Rothman JE (1990) SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 61: 709-721.

    Article  PubMed  Google Scholar 

  • Clements JD (1990)Astatistical test for demonstrating a presynaptic site of action for a modulator of synaptic amplitude. J. Neurosci. Meth. 31: 75-88.

    Article  Google Scholar 

  • Colomo F, Rahamimoff R (1968) Interaction between sodium and calcium ions in the process of transmitter release at the neuromuscular junction. J. Physiol. 198: 203-.

    Google Scholar 

  • Cuttle MF, Tsujimoto T, Forsythe ID, Takahashi T (1998) Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem. J. Physiol. 512: 723-729.

    Article  PubMed  Google Scholar 

  • Daly C, Sugimori M, Moreira JE, Ziff EB, Llinas R (2000) Synaptophysin regulates clathrin-independent endocytosis of synaptic vesicles. Proc. Natl. Acad. Sci. USA. 97: 6120-6125.

    Article  PubMed  Google Scholar 

  • David P, El Far O, Martin-Moutot N, Poupon MF, Takahashi M, Seagar MJ (1993) Expression of synaptotagmin and syntaxin associated with N-type calcium channels in small cell lung cancer. FEBS Lett. 326: 135-139.

    Article  PubMed  Google Scholar 

  • DeBello WM, O'Connor V, Dresbach T, Whiteheart SW, Wang SS, Schweizer FE, Betz H, Rothman JE, Augustine GJ (1995) SNAP-mediated protein-protein interactions essential for neurotransmitter release. Nature 373(6515): 626-630.

    Article  PubMed  Google Scholar 

  • Degtiar VE, Scheller RH, Tsien RW (2000) Syntaxin modulation of slow inactivation of N-type calcium channels. J. Neurosci. 20: 4355-4367.

    PubMed  Google Scholar 

  • del Castillo J, Katz B (1954) The effect of magnesium on the activity of motor nerve endings. J. Physiol. 124: 553-559.

    PubMed  Google Scholar 

  • Dodge FA, Rahamimoff R (1967) Co-operative action of calcium ions in transmitter release at the neuromuscular junction. J. Physiol. 193: 419-432.

    PubMed  Google Scholar 

  • Doussau F, Augustine GJ (2000) The actin cytoskeleton and neurotransmitter release: An overview. Biochimie. 82: 353-363.

    Article  PubMed  Google Scholar 

  • Duncan RR, Betz A, Shipston MJ, Brose N, Chow RH (1999) Transient, phorbol ester-induced DOC2-Munc13 interactions in vivo. J. Biol. Chem. 274(39): 27347-27350.

    Article  PubMed  Google Scholar 

  • Eastwood SL, Harrison PJ (2000a) Hippocampal synaptic pathology in schizophrenia, bipolar disorder and major depression: A study of complexin mRNAs. Mol. Psychiatry 5(4): 425-432.

    Article  PubMed  Google Scholar 

  • Eastwood SL, Harrison PJ (2000b) Complexin I and II mRNAs in the human hippocampus. Mol. Psychiatry 5: 341.

    Article  PubMed  Google Scholar 

  • El Far O, Martin Moutot N, Lévêque C, David P, Marquèze B, Lang B, Newsom-Davis J, Hoshino T, Takahashi M, Seagar MJ (1993) Synaptotagmin associates with presynaptic calcium channels and is a Lambert-Eaton myasthenic syndrome antigen. Ann.NYAcad. Sci. 707: 382-385.

    Google Scholar 

  • Faber DS, Korn H (1991) Applicability of the coefficient of variation method for analyzing synaptic plasticity. Biophys. J. 60: 1288-1294.

    PubMed  Google Scholar 

  • Faber DS, Young WS, Legendre P, Korn H (1992) Intrinsic quantal variability due to stochastic properties of receptor-transmitter interactions. Science 258: 1494-1498.

    PubMed  Google Scholar 

  • Fernandez-Chacon R, Konigstorfer A, Gerber SH, Garcia J, Matos MF, Stevens CF, Brose N, Rizo J, Rosenmund C, Südhof TC (2001) Synaptotagmin I functions as a calcium regulator of release probability. Nature 410(6824): 41-49.

    Article  PubMed  Google Scholar 

  • Fernandez-Chacon R, Südhof TC (1999) Genetics of synaptic vesicle function: Toward the complete functional anatomy of an organelle. Ann. Rev. Physiol. 61: 753-776.

    Article  Google Scholar 

  • Fesce R (1999) The kinetics of nerve-evoked quantal secretion. Phil. Trans. Roy. Soc. B 354: 319-329.

    Article  Google Scholar 

  • Fisher RJ, Pevsner J, Burgoyne RD (2001) Control of fusion pore dynamics during exocytosis by Munc18. Science 291(5505): 875-878.

    Article  PubMed  Google Scholar 

  • Forsythe ID, Tsujimoto T, Barnes-Davies M, Cuttle MF, Takahashi T (1998) Inactivation of presynaptic calcium current contributes to synaptic depression at a fast central synapse. Neuron 20: 797-807.

    Article  PubMed  Google Scholar 

  • Fujita Y, Sasaki T, Fukui K, Kotani H, Kimura T, Hata Y, Südhof TC, Scheller RH, Takai Y (1996) Phosphorylation of Munc-18/n-Sec1/rnSec1 by protein kinase C-Its implication in regulating the nteraction of Munc-18/n-Sec1/rbSec1 with syntaxin. J. Biol. Chem. 271: 7265-7268.

    Article  PubMed  Google Scholar 

  • Fujita Y, Shirataki H, Sakisaka T, Asakura T, Ohya T, Kotani H, Yokoyama S, Nishioka H, Matsuura Y, Mizoguchi A, Scheller RH, Takai Y (1998) Tomosyn: A syntaxin-1-binding protein that forms a novel complex in the neurotransmitter release process. Neuron 20: 905-915.

    Article  PubMed  Google Scholar 

  • Fuhrmann G, Segev I, Markram H, Tsodyks M. (2002) Coding of temporal information by activity-dependent synapses. J. Neurophysiol. 87: 140-148.

    PubMed  Google Scholar 

  • Geppert M, Südhof TC (1998) RAB3 and synaptotagmin: The yin and yang of synaptic membrane fusion. Ann. Rev. Neurosci. 21: 75-95.

    Article  PubMed  Google Scholar 

  • Graham ME, O'Callaghan DW, McMahon HT, Burgoyne RD (2002) Dynamin-dependent and dynamin-independent processes contribute to the regulation of single vesicle release kinetics and quantal size. Proc. Natl. Acad. Sci. USA 99: 7124-7129.

    Article  PubMed  Google Scholar 

  • Harata N, Pyle JL, Aravanis AM, Mozhayeva M, Kavalali ET, Tsien RW(2001b) Limited numbers of recycling vesicles in small CNS nerve terminals: Implications for neural signaling and vesicular cycling. Trends Neurosci. 24: 637-643.

    Article  PubMed  Google Scholar 

  • Harata N, Ryan TA, Smith SJ, Buchanan J, Tsien RW (2001) Visualizing recycling synaptic vesicles in hippocampal neurons by FM 1-43 photoconversion. Proc. Natl. Acad. Sci. USA 98: 12748-12753.

    Article  PubMed  Google Scholar 

  • Hess SD, Doroshenko PA, Augustine GJ (1993) A functional role for GTP-binding proteins in synaptic vesicle cycling. Science 259(5098): 1169-1172.

    PubMed  Google Scholar 

  • Hilfiker S, Pieribone VA, Czernik AJ, Kao HT, Augustine GJ, Greengard P (1999) Synapsins as regulators of neurotransmitter release. Phil. Trans. Roy. Society B 354: 269-279.

    Article  Google Scholar 

  • Hinz B, Becher A, Mitter D, Schulze K, Heinemann U, Draguhn A, Ahnert-Hilger G (2001) Activity-dependent changes of the presynaptic synaptophysin-synaptobrevin complex in adult rat brain. Eur. J. Cell. Biol. 80: 615-619.

    PubMed  Google Scholar 

  • Hubbard JI (1963) Repetitive stimulation at the mammalian neuromuscular junction and the mobilization of transmitter. J. Physiol. 169: 641-662.

    PubMed  Google Scholar 

  • Hubbard JI (1961) The effect of calcium and magnesium on the spontaneous release of transmitter from mammalian nerve endings. J. Physiol. 159: 507-.

    PubMed  Google Scholar 

  • Hubbard JL, Jones SF, Landau EM (1968) On the mechanism by which calcium and magnesium affect the release of transmitter by nerve impulses. J. Physiol. 196: 75-86.

    PubMed  Google Scholar 

  • Hutt DM, Da-Silva LF, Chang LH, Prosser DC, Ngsee JK (2000) PRA1 inhibits the extraction of membrane-bound rab GTPase by GDI1. J. Biol. Chem. 275(24): 18511-18519.

    Article  PubMed  Google Scholar 

  • Jahn R (2000) Sec1/Munc18 proteins: Mediators of membrane fusion moving to center stage. Neuron 27: 201-204.

    Article  PubMed  Google Scholar 

  • Jahn R, Südhof TC (1999) Membrane fusion and exocytosis. Annu. Rev. Biochem. 68: 863-911.

    Article  PubMed  Google Scholar 

  • Janz R, Goda Y, Geppert M, Missler M, Südhof TC (1999) SV2A and SV2B function as redundant Ca2+ regulators in neurotransmitter release. Neuron 24: 1003-1016.

    Article  PubMed  Google Scholar 

  • Janz R, Südhof TC, Hammer RE, Unni V, Siegelbaum SA, Bolshakov VY (1999) Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron 24: 687-700.

    Article  PubMed  Google Scholar 

  • Jenkinson DH (1957) The nature of the antagonism between calcium and magnesium ions at the neuromuscular junction. J. Physiol. 138: 434–.

    PubMed  Google Scholar 

  • Johnston PA, Südhoff TC (1990) The multi-subunit structure of synaptophysin. Relationship between disulphide bonding Presynaptic Frequency-and Pattern-Dependent Filtering 199 and homo-oligomerization. J. Biol. Chem. 265: 8869-8873.

    PubMed  Google Scholar 

  • Jovanovic JN, Benfenati F, Siow YL, Sihra TS, Sangh JS, Pelech SL, Greengard P, Czernik AJ (1996) Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin 1-actin interactions. Proc. Natl. Acad. Sci. USA 93: 3679-3683.

    Article  PubMed  Google Scholar 

  • Kasai H, Takahashi N (1999) Multiple kinetic component and the Ca2+ requirements of exocytosis. Phil. Trans. Roy. Soc. B 354: 331-335.

    Article  Google Scholar 

  • Kashani AH, Chen BM, Grinnell AD (2001) Hypertonic enhancement of transmitter release from frog motor nerve terminals: Ca2+ independence and role of integrins. J. Physiol. 530: 243-252.

    Article  PubMed  Google Scholar 

  • Kashani AH, Chen BM, Grinnell AD (2001) Hypertonic enhancement of transmitter release from frog motor nerve terminals: Ca2+ independence and role of integrins. J. Physiol. 530: 243-252.

    Article  PubMed  Google Scholar 

  • Katz B (1969) “The release of neuronal transmitter substances.” Liverpool University Press. Liverpool.

    Google Scholar 

  • Katz B (1996) Neural transmitter release: From quantal secretion to exocytosis and beyond The Fenn Lecture. J. Neurocytology 25: 677-686.

    Google Scholar 

  • Katz B, Miledi R (1965) The effect of calcium on acetylcholine release from motor nerve terminals. Proc. Roy. Soc. B 161: 496-503.

    Google Scholar 

  • Katz B, Miledi R (1967a) The measurement of synaptic delay and the time course of acetylcholine release at the neuromuscular junction. Proc. Roy. Soc B 167: 23-38.

    Google Scholar 

  • Katz B, Miledi R (1967b) The timing of calcium action during neuromuscular transmission. J. Physiol. 189: 535-544.

    PubMed  Google Scholar 

  • Katz B, Miledi R (1968) The role of calcium in neurotransmitter facilitation. J. Physiol. 195: 481-492.

    PubMed  Google Scholar 

  • Katz B, Miledi R (1970) Further study of the role of calcium in synaptic transmission. J. Physiol. 207: 789-801.

    PubMed  Google Scholar 

  • Kim K, Catterall WA (1997) Ca2+-dependent and-independent interactions of the isoforms of the Alpha1A subunit of brain Ca2+ channels with presynaptic SNARE proteins. Proc. Natl. Acad. Sci. 94: 14782-14786.

    Article  PubMed  Google Scholar 

  • Klingauf J, Kavalali ET, Tsien RW (1998) Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature 394: 581-585.

    Article  PubMed  Google Scholar 

  • Klingauf J, Neher E (1997) Modeling buffered Ca2+ diffusion near the membrane: Implications for secretion in neuroendocrine cells. Biophysical Journal 72: 674-690.

    PubMed  Google Scholar 

  • Koester HJ, Sakmann B (2000) Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex. J. Physiol. 529: 625-646.

    Article  PubMed  Google Scholar 

  • Landau EM (1969) The interaction of presynaptic polarization with calcium and magnesium in modifying spontaneous transmitter release from mammalian nerve terminals. J. Physiol. 203: 281-299.

    PubMed  Google Scholar 

  • Li L, Chin LS, Shupliakoz O, Brodin L, Sihra TS, Hvalby O, Jensen V, Zheng D, McNamara JO, Greengard P (1995) Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin I deficient mice. Proc. Natl. Acad. Sci. USA 92: 9235-9239.

    PubMed  Google Scholar 

  • Liley AW (1956) The quantal components of the mammalian endplate potential J. Physiol. 133: 571-587.

    Google Scholar 

  • Littleton JT, Barnard RJ, Titus SA, Slind J, Chapman ER, Ganetzky B (2001) SNARE-complex disassembly by NSF follows synapticvesicle fusion. Proc. Natl. Acad. Sci. USA 98: 12233-12238.

    Article  PubMed  Google Scholar 

  • Liu RC, Tzonev S, Rebrik S, Miller KD (2001) Variability and information in a neural code of the cat lateral geniculate nucleus. J. Neurophysiol. 86: 2789-2806.

    PubMed  Google Scholar 

  • Liu XB, Jones EG (1996) Localization of á type II calcium calmodulin-dependent protein kinase at glutamatergic but not at (-aminobutyric acid (GABAergic) synapses in thalamus and cerebral cortex. Proc. Natl. Acad. Sci. USA 93: 7332-7336.

    Article  PubMed  Google Scholar 

  • Llinas R, Steinberg IZ, Walton K (1981) Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. Biophysical J. 33: 323-352.

    Google Scholar 

  • Llinas R, Gruner JA, Sugimori M, McGuinness TL, Greengard P (1991) Regulation by synapsin I and Ca2+-calmodulin-dependent protein kinase II of transmitter release in squid giant synapse. J. Physiol. 436: 257-282.

    PubMed  Google Scholar 

  • Llinas R, Sugimori M, Silver RB (1992) Microdomains of high calcium concentration in a presynaptic terminal. Science 256: 677-679.

    PubMed  Google Scholar 

  • Llinas RR, Blinks JB, Nicholson C (1972) Calcium transients in presynaptic terminal of squid giant synapse: Detection with aequorin. Science 176: 1127-1129.

    PubMed  Google Scholar 

  • Llinas R, Steinberg IZ, Walton K (1976) Presynaptic calcium currents and their relation to synaptic transmission: Voltage clamp study in squid giant synapse and theoretical model for the calcium gate. Proc. Natl. Acad. Sci. USA 73: 2918-2922.

    Google Scholar 

  • Llinas R, Sugimori M, Silver RB (1994) Localization of calcium concentration microdomains at the active zone in the squid giant synapse. Advances in Second Messenger and Phosphoprotein Res. 29: 133-138.

    Google Scholar 

  • Llinas R, Sugimori M, Silver RB (1995) The concept of calcium concentration microdomains in synaptic transmission. Neuropharmacol. 34: 1443-1451.

    Article  Google Scholar 

  • Lonart G, Südhof TC (2000) Assembly of SNARE core complexes prior to neurotransmitter release sets the readily releasable pool of synaptic vesicles. J. Biol. Chem. 275: 27703-27707.

    PubMed  Google Scholar 

  • Lonart G, Südhof TC (2001) Characterization of rabphilin phosphorylation using phospho-specific antibodies. Neuropharmacology 41: 643-649.

    Article  PubMed  Google Scholar 

  • Magleby KL, Zengel JE (1976) Stimulation-induced factors which affect augmentation and potentiation of transmitter release at the neuromuscular junction. J. Physiol. 260: 687-717.

    PubMed  Google Scholar 

  • Magleby KL, Zengel JE (1975) A dual effect of repetitive stimulation on post-tetanic potentiation of transmitter release at the frog neuromuscular junction. J. Physiol. 245: 163-182.

    PubMed  Google Scholar 

  • Mallart A, Martin AR (1967) An analysis of facilitation of transmitter release at the neuromuscular junction of the frog. J. Physiol. 193: 447-466.

    Google Scholar 

  • Magleby KL, Zengel JE (1982) A quantitative description of stimulation-induced changes in transmitter release at the frog neuromuscular junction. J. Gen. Physiol. 80: 613-638.

    Article  PubMed  Google Scholar 

  • Markram H, (1997) Network of tufted layer 5 pyramidal neurons. Cerebral. Cortex 7: 523-533.

    Article  PubMed  Google Scholar 

  • Markram H, Luebke J, Frötscher M, Roth A, Sakmann B (1997) Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. 500: 409-440.

    PubMed  Google Scholar 

  • Markram H, Wang Y, Tsodyks M (1998b) Differential signalling via the same axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci. USA 95: 5323-5328.

    Article  PubMed  Google Scholar 

  • Marks B, Stowell MH, Vallis Y, Mills IG, Gibson A, Hopkins CR, McMahon HT (2001) GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature 410(6825): 231-235.

    Article  PubMed  Google Scholar 

  • Marks B, McMahon HT (1998) Calcium triggers calcineurindependent synaptic vesicle recycling in mammalian nerve terminals. Current Biol. 8: 740-749.

    Article  Google Scholar 

  • Marsal J, Ruiz-Montasell B, Blasi J, Moreira JE, Contreras D, Sugimori M, Llinas R (1997) Block of transmitter release by botulinum C1 action on syntaxin at the squid giant synapse. Proc. Natl. Acad. Sci. 94: 14871-14876.

    Article  PubMed  Google Scholar 

  • Martin AR (1955) A further study of the statistical composition of the end-plate potential. J. Physiol. 130: 114-122.

    PubMed  Google Scholar 

  • Matos MF, Rizo J, Südhof TC (2000) The relation of protein binding to function: What is the significance of munc18 and synaptotagmin binding to syntaxin 1, and where are the corresponding binding sites? Eur. J. Cell. Biol. 79: 377-382.

    PubMed  Google Scholar 

  • McLachlan EM (1978) The statistics of transmitter release at chemical synapses. In: R. Porter, ed. International Review of Physiol., Neurophysiology III, Vol 17. Baltimore, MD. University Park. pp. 49-117.

    Google Scholar 

  • McMahon HT, Südhof TC (1995) Synaptic core complex of synaptobrevin, syntaxin, and SNAP25 forms high affinity Alpha-SNAP binding site. J. Biol. Chem. 270: 2213-2217.

    Article  PubMed  Google Scholar 

  • McNaughton NCL, Bleakman D, Randall AD (1998) Electrophysiological characterisation of the human N-type Ca2+ channel II. Activation and inactivation by physiological patterns of activity. Neuropharmacol. 37: 67-81.

    Google Scholar 

  • Meinrenken CJ, Borst JG, Sakmann B (2002) Calcium secretion coupling at calyx of held governed by nonuniform channel-vesicle topography. J. Neurosci. 22: 1648-1667.

    PubMed  Google Scholar 

  • Miesenbock G, De Angelis DA, Rothman JE. (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394(6689): 192-195.

    Article  PubMed  Google Scholar 

  • Mirotznik RR, Stanley EF (1997) Cleavage of syntaxin prevents Gprotein regulation of presynaptic calcium channels Nature 385: 340-343.

    Article  PubMed  Google Scholar 

  • Morgan JR, Prasad K, Hao W, Augustine GJ, Lafer EM (2000) A conserved clathrin assembly motif essential for synaptic vesicle endocytosis J. Neurosci. 20: 8667-8676.

    Google Scholar 

  • Murthy VN, Stevens CF (1999) Reversal of synaptic vesicle docking at central synapses. Nat. Neurosci. 2: 503-507.

    Article  PubMed  Google Scholar 

  • Neves G, Lagnado L (1999) The kinetics of exocytosis and endocytosis in the synaptic terminal of goldfish retinal bipolar cells. J. Physiol. 515: 181-202.

    Article  PubMed  Google Scholar 

  • Nyiri G, Freund TF, Somogyi P. (2001) Input-dependent synaptic targeting of alpha(2)-subunit-containing GABAA receptors in synapses of hippocampal pyramidal cells of the rat. Eur. J. Neurosci. 13: 428-442.

    Article  PubMed  Google Scholar 

  • O’Connor V, Shamotienko O, Grishin E, Betz H (1993) On the structure of the synaptosecretosonme: Evidence for a neurexin/synaptotagmin/syntaxin/Ca2+ channel complex. FEBBS Lett. 326: 255-260.

    Google Scholar 

  • Oram MW, Hatsopoulos NG, Richmond BJ, Donoghue JP (2001) Excess synchrony in motor cortical neurons provides redundant direction information with that from coarse temporal measures. J. Neurophysiol. 86: 1700-1716.

    PubMed  Google Scholar 

  • Oram MW, Xiao D, Dritschel B, Payne KR. (2002) The temporal resolution of neural codes: Does response latency have a unique role? Phil. Trans. R. Soc. Lond. B. Biol. Sci. 357: 987-1001.

    Article  Google Scholar 

  • Pabst S, Hazzard JW, Antonin W, Südhof TC, Jahn R, Rizo J, Fasshauer D (2000) Selective interaction of complexin with the neuronal SNARE complex. Determination of the binding regions. J. Biol. Chem. 275(26): 19808-19818.

    Google Scholar 

  • Palfrey HC, Artalejo CR (1998) Vesicle recycling revisited: Rapid endocytosis may be the first step. Neuroscience 83: 969-989.

    Article  PubMed  Google Scholar 

  • Panzeri S, Petersen RS, Schultz SR, Lebedev M, Diamond ME (2001) The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron 29: 769-777.

    Article  PubMed  Google Scholar 

  • Patil PG, Brody DL, Yue DT (1998) Preferential closed-state inactivation of neuronal calcium channels. Neuron 20: 1027-1038.

    Article  PubMed  Google Scholar 

  • Pawelzik H, Bannister AP, Deuchars J, Ilia M, Thomson AM (1999) Modulation of bistratified cell IPSPs and basket cell IPSPs by pentobarbitone sodium, diazepam and Zn2+: Dual recordings in slices of adult rat hippocampus. Europ. J. Neurosci. 11: 3552-3564.

    Article  Google Scholar 

  • Petersen RS, Panzeri S, Diamond ME (2001) Population coding of stimulus location in rat somatosensory cortex. Neuron 32: 503-514.

    Article  PubMed  Google Scholar 

  • Petersen RS, Panzeri S, Diamond ME (2002) Population coding in somatosensory cortex. Curr. Opin. Neurobiol. 12: 441-447.

    Article  PubMed  Google Scholar 

  • Pieribone VA, Shupliakov O, Brodin L, Hilfiker-Rothenfluh S, Czernik AJ, Greengard P (1995) Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375: 493-497.

    Article  PubMed  Google Scholar 

  • Pyle JL, Kavalali ET, Piedras-Renteria ES, Tsien RW (2000) Rapid reuse of readily releasable pool vesicles at hippocampal synapses. Neuron 28: 221-231.

    Article  PubMed  Google Scholar 

  • Quastel DMJ (1997) The binomial model in fluctuation analysis of quantal neurotransmitter release. Biophysical J. 72: 728-753.

    Google Scholar 

  • Ravin R, Parnas H, Spira ME, Volfovsky N, Parnas I (1999) Simultaneous measurement of evoked release and [Ca2+]i in a crayfish release bouton reveals high affinity of release to Ca2+. J. Neurophysiol. 81: 634-642.

    PubMed  Google Scholar 

  • Redman SJ (1990) Quantal analysis of synaptic potentials in neurons of the central nervous system. Phys. Rev. 70: 165-198.

    Google Scholar 

  • Reid CA, Bekkers JM, Clements JD (1998) N-and P/Q-type Ca2+ channels mediate transmitter release with a similar cooperativity at rat hippocampal autapses. J. Neurosci. 18: 2849-2855.

    PubMed  Google Scholar 

  • Reim K, Mansour M, Varoqueaux F, McMahon HT, Südhof TC, Brose N, Rosenmund C (2001) Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 104: 71-81.

    Article  PubMed  Google Scholar 

  • Reyes A, Lujan R, Rozov A, Burnashev N, Somogyi P, Sakmann B (1998) Target-cell-specific facilitation and depression in neocortical circuits. Nature Neurosci. 1: 279-285.

    Article  PubMed  Google Scholar 

  • Rhee JS, Betz A, Pyott S, Reim K, Varoqueaux F, Augustin I, Hesse D, Südhof TC, Takahashi M, Rosenmund C, Brose N (2002) Beta phorbol ester-and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 108: 121-133.

    Article  PubMed  Google Scholar 

  • Richards DA, Guatimosim C, Betz WJ (2000) Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals. Neuron 27: 551-559.

    Article  PubMed  Google Scholar 

  • Richmond JE, Davis WS, Jorgensen EM (1999) UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat Neurosci. 2: 959-964.

    Article  PubMed  Google Scholar 

  • Robinson PJ, Liu J-P, Powell KA, Fykse EM, Südhof TC, (1994) Phosphorylation of dynamin I and synaptic-vesicle recycling. TINS 17: 348-353.

    PubMed  Google Scholar 

  • Rosahl TW, Spillane D, Missler M, Herz J, Selig DK, Wolff JR, Hammer RE, Malenka RC, Südhof TC (1995) Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375: 488-493.

    Article  PubMed  Google Scholar 

  • Rosenmund C, Sigler A, Augustin I, Reim K, Brose N, Rhee JS (2002) Differential control of vesicle priming and short-term plasticity by Munc13 isoforms. Neuron 33: 411-424.

    Article  PubMed  Google Scholar 

  • Sankaranarayanan S, Ryan TA(2000) Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nat. Cell. Biol. 2: 197-204.

    PubMed  Google Scholar 

  • Schikorski T, Stevens CF. (2001) Morphological correlates of functionally defined synaptic vesicle populations. Nat. Neurosci. 4: 391-395.

    Article  PubMed  Google Scholar 

  • Schneggenburger R, Neher E (2000) Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406(6798): 889-893.

    Article  PubMed  Google Scholar 

  • Schoch S, Castillo PE, Jo T, Mukherjee K, Geppert M, Wang Y, Schmitz F, Malenka RC, Südhof TC (2002) RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415(6869): 321-326.

    Article  PubMed  Google Scholar 

  • Seagar M, Lévêque C, Charvin N, Marquèze B, Martin-Moutot N, Boudier JA, Boudier JL, Shoji-Ksai Y, Sato K, Takahashi M (1999) Interactions between proteins implicated in exocytosis and voltage-gate calcium channels. Phil. Trans. Roy. Soc. B 354: 289-297.

    Article  Google Scholar 

  • Shimazaki Y, Nishiki T, Omoroi A, Sekiguchi M., Kamata Y, Kozaki S, Takahashi M (1996) Phosphorylation of 25-kDa synaptosomeassociated protein-Possible involvement in protein kinase Cmediated regulation of transmitter release. J. Biol. Chem. 271: 14548-14553.

    Article  PubMed  Google Scholar 

  • Sihra TS, Wang JK, Gorelick FS, Greengard P (1989) Translocation of synapsin I in response to depolarization of isolated nerve terminals. Proc. Natl. Acad. Sci. USA 86: 8108-8112.

    PubMed  Google Scholar 

  • Stanley EF (1985) Evidence for 4 calcium activated sites involved in transmitter release and facilitation at the squid giant synapse. Biol. Bull. 167: 532-.

    Google Scholar 

  • Stanley EF (1986) Decline in calcium cooperativity as the basis of facilitation at the squid giant synapse. J. Neurosci. 6: 782-789.

    PubMed  Google Scholar 

  • Stanley EF Atrakchi, AH (1990) The calcium current in the presynaptic terminal of the chick giant synapse is insensitive to the dihydropiridine nifedipine. Proc. Natl. Acad. Sci. USA 87: 9683-9687.

    PubMed  Google Scholar 

  • Stanley, EF (1991) Single calcium channels on a cholinergic presynaptic nerve terminal. Neuron 7: 585-591.

    Article  PubMed  Google Scholar 

  • Stanley, EF (1993) Single calcium channels and acetylcholine release at a presynaptic nerve terminal. Neuron 11: 1007-1011.

    Article  PubMed  Google Scholar 

  • Stanley EF (1995) Calcium entry and the functional organization of the presynaptic transmitter release site. In: Excitatory Amino Acids and Synaptic Transmission. in eds H.V. Wheal and A.M. Thomson. Academic Press. London. pp. 17-27.

    Google Scholar 

  • Stanley EF (1997) The calcium channel and the organization of the presynaptic transmitter release face. TINS 20: 404-409.

    PubMed  Google Scholar 

  • Stanley EF (2000) Presynaptic calcium channels and the depletion of synaptic cleft calcium ions. J. Neurophysiol. 83: 477-482.

    PubMed  Google Scholar 

  • Stevens CF, Wesseling JF (1999) Identification of a novel process limiting the rate of synaptic vesicle cycling at hippocampal synapses. Neuron 24: 1017-1028.

    Article  PubMed  Google Scholar 

  • Stevens CF, Williams JH (2000) “Kiss and run” exocytosis at hippocampal synapses. Proc. Natl. Acad. Sci. USA 97: 12828-12833.

    Article  PubMed  Google Scholar 

  • Südhof TC (1995) The synaptic vesicle cycle: A cascade of proteinprotein interactions. Nature 375: 645-653.

    Article  PubMed  Google Scholar 

  • Südhof TC (2001) alpha-Latrotoxin and its receptors: Neurexins and CIRL/latrophilins. Annu. Rev. Neurosci. 24: 933-962.

    Article  PubMed  Google Scholar 

  • Südhof TC (2000) The synaptic vesicle cycle revisited. Neuron 28: 317-320.

    Article  PubMed  Google Scholar 

  • Sugita S, Saito F, Tang J, Satz J, Campbell K, Südhof TC (2001) A stoichiometric complex of neurexins and dystroglycan in brain. J. Cell. Biol. 154: 435-445.

    Article  PubMed  Google Scholar 

  • Sugita S, Ho A, Südhof TC (2002) NECABs: A family of neuronal Ca2+-binding proteins with an unusual domain structure and a restricted expression pattern. Neuroscience 112: 51-63.

    Article  PubMed  Google Scholar 

  • Sutton RB, Fasshauer D, Jahn R, BrungerAT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4A resolution. Nature 395(6700): 347-353.

    Article  PubMed  Google Scholar 

  • Swandulla D, Hans M, Zipser K, Augustine GJ (1991) Role of residual calcium in synaptic depression and post-tetanic potentiation: Fast and slow calcium signalling in nerve terminals. Neuron 7: 915-926.

    Article  PubMed  Google Scholar 

  • Tabuchi K, Südhof TC (2002) Structure and evolution of neurexin genes: Insight into the mechanism of alternative splicing. Genomics 79: 849-859.

    Article  PubMed  Google Scholar 

  • Tang Y, Schlumpberger T, Kim T, Lueker M, Zucker RS (2000) Effects of mobile buffers on facilitation: Experimental and computational studies. Biophys. J. 78(6): 2735-2751.

    PubMed  Google Scholar 

  • Thomson AM, Deuchars J, West DC (1993a) Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically. J. Neurophysiol. 70: 2354-2369.

    PubMed  Google Scholar 

  • Thomson AM, Deuchars J, West DC (1993b) Single axon excitatory postsynaptic potentials in neocortical interneurons exhibit pronounced paired pulse facilitation. Neuroscience 54: 347-360.

    Article  PubMed  Google Scholar 

  • Thomson AM, West DC (1993) Fluctuations in pyramid-pyramid excitatory postsynaptic potentials modified by presynaptic firing pattern and postsynaptic membrane potential using paired intracellular recordings in rat neocortex. Neuroscience 54: 329-346.

    Article  PubMed  Google Scholar 

  • Thomson AM, West DC, Deuchars J (1995) Properties of single axon EPSPs elicited in spiny interneurones by action potentials in pyramidal neurones in slices of rat neocortex display unique properties. Neuroscience 69: 727-738.

    Article  PubMed  Google Scholar 

  • Thomson AM (1997) Activity-dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal axons in vitro. J. Physiol. 502: 131-147.

    Article  PubMed  Google Scholar 

  • Thomson AM, Bannister AP (1999) Release-independent depression at pyramidal inputs onto specific cell targets: Dual recordings in slices of rat cortex. J. Physiol. 519: 57-70.

    Article  PubMed  Google Scholar 

  • Thomson AM (2000) Molecular frequency filters at central synapses. Prog. Neurobiol. 62: 159-196.

    Article  PubMed  Google Scholar 

  • Thomson AM, West DC (2003) Presynaptic frequency filtering in the gamma frequency band; dual intracellular recordings in slices of adult rat and cat neocortex. Cereb. Cortex 13: 136-143.

    Article  PubMed  Google Scholar 

  • Thomson AM, Bannister AP, Hughes DI, Pawelzik H (2000) Differential sensitivity to Zolpidem of IPSPs activated by morphologically identified CA1 interneurones in slices of rat hippocampus. Europ. J. Neuroscience 12: 425-436.

    Article  Google Scholar 

  • Thorpe S, Delorme A, Van Rullen R. (2001) Spike-based strategies for rapid processing. Neural. Netw. 14: 715-725.

    Article  PubMed  Google Scholar 

  • Tobaben S, Thakur P, Fernandez-Chacon R, Südhof TC, Rettig J, Stahl B (2001) A trimeric protein complex functions as a synaptic chaperone machine. Neuron 31: 987-999.

    Article  PubMed  Google Scholar 

  • Tokumaru H, Augustine GJ (1999) UNC-13 and neurotransmitter release. Nat. Neurosci. 2: 929-930.

    Article  PubMed  Google Scholar 

  • Tolar LA, Pallanck L (1998) NSF function in neurotransmitter release involves rearrangement of the SNARE complex downstream of synaptic vesicle docking. J. Neurosci. 18: 10250-10256.

    PubMed  Google Scholar 

  • Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl. Acad. Sci. USA 94: 719-723.

    Article  PubMed  Google Scholar 

  • Turner KM, Burgoyne RD, Morgan A (1999) Protein phosphorylation and the regulation of synaptic membrane traffic. TINS 22: 459-464.

    PubMed  Google Scholar 

  • VanRullen R, Thorpe SJ. (2002) Surfing a spike wave down the ventral stream. Vision Res. 42: 2593-2615.

    Article  PubMed  Google Scholar 

  • Varoqueaux F, Sigler A, Rhee JS, Brose N, Enk C, Reim K, Rosenmund C (2002) Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc. Natl. Acad. Sci. USA 99: 9037-9042.

    Article  PubMed  Google Scholar 

  • Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH, Vermeer H, Toonen RF, Hammer RE, van den Berg TK, Missler M, Geuze HJ, Südhof TC (2000) Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287(5454): 864-869.

    Article  PubMed  Google Scholar 

  • Voets T, Toonen RF, Brian EC, de Wit H, Moser T, Rettig J, Südhof TC, Neher E, Verhage M (2001) Munc18-1 promotes large densecore vesicle docking. Neuron 31: 581-591.

    Article  PubMed  Google Scholar 

  • von Poser C, Südhof TC (2001) Synaptotagmin 13: Structure and expression of a novel synaptotagmin. Eur. J. Cell. Biol. 80: 41-47.

    PubMed  Google Scholar 

  • Xu J, Xu Y, Ellis-Davies GC, Augustine GJ, Tse FW (2002) Differential regulation of exocytosis by alpha-and beta-SNAPs. J. Neurosci. 22: 53-61.

    PubMed  Google Scholar 

  • Xu-Friedman MA, Harris KM, Regehr WG (2001) Three dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J. Neurosci. 21: 6666-6672.

    PubMed  Google Scholar 

  • Yokoyama CT, Sheng ZH, Catterall WA (1997) Phosphorylation of the synaptic protein interaction site on N-type calcium channels inhibits interactions with SNARE proteins. J. Neurosci. 17: 6929-7693.

    PubMed  Google Scholar 

  • Walker HC, Lawrence JJ, McBain CJ (2002) Activation of kinetically distinct synaptic conductances on inhibitory interneurons by electrotonically overlapping afferents. Neuron 35: 161-171.

    Article  PubMed  Google Scholar 

  • Wang Y, Sugita S, Südhof TC (2000) The RIM/NIM family of neuronal C2 domain proteins. Interactions with Ra b3 and a new class of Src homology 3 domain proteins. J. Biol. Chem. 275: 20033-20044.

    Article  PubMed  Google Scholar 

  • Zucker RS (1989) Short-term synaptic plasticity. Annu. Rev. Neurosci. 12: 13-31.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomson, A.M. Presynaptic Frequency- and Pattern-Dependent Filtering. J Comput Neurosci 15, 159–202 (2003). https://doi.org/10.1023/A:1025812808362

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025812808362

Navigation