Skip to main content
Log in

Large Porous Particle Impingement on Lung Epithelial Cell Monolayers—Toward Improved Particle Characterization in the Lung

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The ability to optimize new formulations for pulmonary delivery has been limited by inadequate in vitro models used to mimic conditions particles encounter in the lungs. The aim is to develop a physiologically-relevant model of the pulmonary epithelial barrier that would allow for quantitative characterization of therapeutic aerosols in vitro.

Methods. Calu-3 human bronchial epithelial cells were cultured on permeable filter inserts under air-interfaced culture (AIC) and liquid-covered culture (LCC) conditions. Calu-3 cells grown under both conditions formed tight monolayers and appeared physiologically similar by SEM and immunocytochemical staining against cell junctional proteins and prosurfactant protein-C.

Results. Aerosolized large porous particles (LPP) deposited homogeneously and reproducibly on the cell surface and caused no apparent damage to cell monolayers by SEM and light microscopy. However, monolayers initially grown under LCC conditions showed a significant decrease in barrier properties within the first 90 min after impingement with microparticles, as determined by transepithelial electrical resistance (TEER) measurements and fluorescein-sodium transport. Conversely, AIC grown monolayers showed no significant change in barrier properties within the first 90 min following particle application. A dense mucus coating was found on AIC grown Calu-3 monolayers, but not on LCC grown monolayers, which may protect the cell surface during particle impinging.

Conclusions. This in vitro model, based on AIC grown Calu-3 cells, should allow a more relevant and quantitative characterization of therapeutic aerosol particles intended for delivery to the tracheo-bronchial region of the lung or to the nasal passages. Such characterization is likely to be particularly important with therapeutic aerosol particles designed to provide sustained drug release in the lung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. S. Patton and R. Platz. Pulmonary delivery of peptides and proteins for systemic action. Adv. Drug Deliv. Rev. 8:179-196 (1992).

    Google Scholar 

  2. S. Sanjar and S. Matthews. Treating systemic diseases via the lung. J. Aerosol Med. 14:S51-S58 (2001).

    Google Scholar 

  3. J. S. Patton. Inhalation: The other “oral” route for delivery of molecules with low gastrointestinal bioavailability. Abstr. Pap. Am. Chem. Soc. 219:175(2000).

    Google Scholar 

  4. R. W. Niven. Delivery of biotherapeutics by inhalation aerosol. Crit. Rev. Ther. Drug Carrier Syst. 12:151-231 (1995).

    Google Scholar 

  5. X. M. Zeng, G. P. Martin, and C. Marriott. The controlled delivery of drugs to the lung. Int. J. Pharm. 124:149-164 (1995).

    Google Scholar 

  6. D. A. Edwards, J. Hanes, G. Caponetti, J. Hrkach, A. Ben—Jebria, M. L. Eskew, J. Mintzes, D. Deaver, N. Lotan, and R. Langer. Large porous particles for pulmonary drug delivery. Science 276:1868-1871 (1997).

    Google Scholar 

  7. R. Vanbever, A. Ben—Jebria, J. D. Mintzes, R. Langer, and D. A. Edwards. Sustained release of insulin from insoluble inhaled particles. Drug Dev. Res. 48:178-185 (1999).

    Google Scholar 

  8. E. R. Weibel. Morphometry of the Human Lung, Academic Press, New York, 1963.

    Google Scholar 

  9. J. Bastacky, C. Y. Lee, J. Goerke, H. Koushafar, D. Yager, L. Kenaga, T. P. Speed, Y. Chen, and J. A. Clements. Alveolar lining layer is thin and continuous: low-temperature scanning electron microscopy of rat lung. J. Appl. Physiol. 79:1615-1628 (1995).

    Google Scholar 

  10. J. Fogh and G. Trempe. In J. Fogh (ed.), Human Tumor Cells In Vitro, Plenum Press, New York, 1975 pp. 115-159.

    Google Scholar 

  11. B. Q. Shen, W. E. Finkbeiner, J. J. Wine, R. J. Mrsny, and J. H. Widdicombe. Calu-3: a human airway epithelial cell line that shows cAMP-dependent Cl-secretion. Am. J. Physiol. 266:L493-L501 (1994).

    Google Scholar 

  12. K. A. Foster, M. Yazdanian, and K. L. Audus. Microparticulate uptake mechanisms of in-vitro cell culture models of the respiratory epithelium. J. Pharm. Pharmacol. 53:57-66 (2001).

    Google Scholar 

  13. J. Moebius, C. Ehrhardt, I. Erler, U. F. Schaefer, and C. M. Lehr. The epithelial cancer cell line Calu-3: Characterization as an in vitro model for drug absorption in the upper airways. Arch. Pharm. Pharm. Med. Chem. 333:13(2001).

    Google Scholar 

  14. M. E. Cavet, M. West, and N. L. Simmons. Transepithelial transport of the fluoroquinolone ciprofloxacin by human airway epithelial Calu-3 cells. Antimicrob. Agents. Ch. 41:2693-2698 (1997).

    Google Scholar 

  15. B. I. Florea, I. C. van der Sandt, S. M. Schrier, K. Kooiman, K. Deryckere, A. G. de Boer, H. E. Junginger, and G. Borchard. Evidence of P-glycoprotein mediated apical to basolateral transport of flunisolide in human broncho-tracheal epithelial cells (Calu-3). Br. J. Pharmacol. 134:1555-1563 (2001).

    Google Scholar 

  16. C. Witschi and R. J. Mrsny. In vitro evaluation of microparticles and polymer gels for use as nasal platforms for protein delivery. Pharm. Res. 16:382-390 (1999).

    Google Scholar 

  17. J. Fu, J. Fiegel, E. Krauland, and J. Hanes. New polymer carriers for controlled drug delivery following inhalation or injection. Biomaterials 23:4425-4433 (2002).

    Google Scholar 

  18. J. Hanes, D. A. Edwards, C. Evora, and R. Langer. Particles incorporating surfactants for pulmonary drug delivery. U.S. Patent No. 5,855,913 (1999).

  19. W. C. Hinds. Aerosol Technology—Properties, Behavior, and Measurement of Airborne Particles, John Wiley & Sons, Inc., New York, 1999.

    Google Scholar 

  20. C. Ehrhardt, C. Kneuer, J. Fiegel, J. Hanes, U. F. Schaefer, K. J. Kim, and C. M. Lehr. Influence of apical fluid volume on the development of functional intercellular junctions in the human epithelial cell line 16HBE14o-: implications for the use of this cell line as an in vitro model for bronchial drug absorption studies. Cell Tissue Res. 308:391-400 (2002).

    Google Scholar 

  21. K. J. Elbert, U. F. Schaefer, H. J. Schafers, K. J. Kim, V. H. L. Lee, and C. M. Lehr. Monolayers of human alveolar epithelial cells in primary culture for pulmonary absorption and transport studies. Pharm. Res. 16:601-608 (1999).

    Google Scholar 

  22. M. Yamaya, W. E. Finkbeiner, S. Y. Chun, and J. H. Widdicombe. Differentiated structure and function of cultures from human tracheal epithelium. Am. J. Physiol. 262:L713-L724 (1992).

    Google Scholar 

  23. H. Wan, H. L. Winton, C. Soeller, G. A. Stewart, P. J. Thompson, D. C. Gruenert, M. B. Cannell, D. R. Garrod, and C. Robinson. Tight junction properties of the immortalized human bronchial epithelial cell lines Calu-3 and 16HBE14o-. Eur. Respir. J. 15:1058-1068 (2000).

    Google Scholar 

  24. B. Forbes, S. Lim, G. P. Martin, and M. B. Brown. An in vitro technique for evaluating inhaled nasal delivery systems. S.T.P. Pharma. 12:75-79 (2002).

    Google Scholar 

  25. M. Kondo, W. E. Finkbeiner, and J. H. Widdicombe. Cultures of bovine tracheal epithelium with differentiated ultrastructure and ion transport. In Vitro Cell. Dev. Biol. 29A:19-24 (1993).

    Google Scholar 

  26. P. M. de Jong, M. A. J. A. van Sterkenburg, J. A. Kempenaar, J. H. Dijkman, and M. Ponec. Serial culturing of human bronchial epithelial cells derived from biopsies. In Vitro Cell. Dev. Biol. 29A:379-387 (1993).

    Google Scholar 

  27. K. J. Kim, Z. Borok, and E. D. Crandall. A useful in vitro model for transport studies of alveolar epithelial barrier. Pharm. Res. 18:253-255 (2001).

    Google Scholar 

  28. C. Ehrhardt, J. Fiegel, S. Fuchs, R. Abu-Dahab, U. F. Schaefer, J. Hanes, and C. M. Lehr. Drug absorption by the respiratory mucosa-cell culture models and particulate drug carriers. J. Aerosol Med. 15:131-139 (2002).

    Google Scholar 

  29. L. Cruewels, L. Golde, and H. Haagsman. The pulmonary surfactant system: Biochemical and clinical aspects. Lung 175:1-39 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Hanes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiegel, J., Ehrhardt, C., Schaefer, U.F. et al. Large Porous Particle Impingement on Lung Epithelial Cell Monolayers—Toward Improved Particle Characterization in the Lung. Pharm Res 20, 788–796 (2003). https://doi.org/10.1023/A:1023441804464

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023441804464

Navigation