Skip to main content
Log in

The Origin of Lactation as a Water Source for Parchment-Shelled Eggs

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Available evidence indicates that mammary gland secretions first evolved in synapsids that laid parchment-shelled eggs. Unlike the rigid-shelled eggs of birds and some other sauropsids, parchment-shelled eggs lose water very rapidly when exposed to ambient air of lower vapor pressure, whether due to differences in relative humidity or to differences in temperature. This precludes endothermic incubation of parchment-shelled eggs in an open nest. Synapsids may have avoided egg desiccation by incubating eggs in a pouch, but this would limit maternal activity. Parchment-shelled eggs are able to take up liquid water across the eggshell. I propose that mammary secretion originally evolved as a means of supplying water to eggs, and as such was essential to the evolution of endothermy among the egg-laying cynodonts that were ancestral to mammals. It is possible that synapsid eggs, like parchment-shelled squamate eggs, were also capable of uptake of some nutrients, such as sodium and ionic calcium. Living monotremes still produce parchment-shelled eggs. The porous eggshell and bilaminar yolk sac membrane of these eggs permit substantial uptake of uterine secretions during the intrauterine period, and might also facilitate uptake of mammary secretions during egg incubation. In its simplest form, mammary secretion may be an ancient trait of egg-laying synapsids, having had an important role long before milk became obligatory for suckling young.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. W. P. Luckett (1977). Ontogeny of amniote fetal membranes and their application to phylogeny. In M. K. Hecht, P. C. Goody, and B. M. Hecht (eds.), Major Patterns in Vertebrate Evolution, Plenum, New York, pp. 439–516.

    Google Scholar 

  2. D. G. Blackburn, V. Hayssen, and C. J. Murphy (1989). The origin of lactation and the evolution of milk: A review with new hypotheses. Mammal Rev. 19: 1–26.

    Google Scholar 

  3. O. T. Oftedal (2002). The mammary gland and its origin during synapsid evolution. J.Mammary Gland Biol.Neoplasia 7: 225–252.

    PubMed  Google Scholar 

  4. C. A. Long (1969). The origin and evolution of mammary glands. Bioscience 19: 519–523.

    Google Scholar 

  5. E. Bresslau (1920). The Mammary Apparatus of the Mammalia in Light of Ontogenesis and Phylogenesis. Methuen &Co, London.

    Google Scholar 

  6. W. K. Gregory (1910). The orders of mammals. Bull.Am.Mus.Nat.Hist. 27: 1–524.

    Google Scholar 

  7. J. B. S. Haldane (1965). The possible evolution of lactation. Zool.Jb.Syst.92: 41–48.

    Google Scholar 

  8. B. M. Graves and D. Duvall (1983). A role of aggregation pheromones in the evolution of mammallike reptile lactation. Am.Nat.122: 835–839.

    Google Scholar 

  9. W. E. Duellman and L. Trueb (1994). Biology of Amphibians, Johns Hopkins University Press, Baltimore, MD.

    Google Scholar 

  10. M. J. Packard and R. S. Seymour (1997). Evolution of the amniote egg. In S. S. Sumida and K. L. M. Martin (eds.), Amniote Origins: Completing the Transition to Land, Academic Press, San Diego, CA, pp. 265–290.

    Google Scholar 

  11. J. R. Stewart (1997). Morphology and evolution of the egg of oviparous amniotes. In S. S. Sumida and K. L. M. Martin (eds.), Amniote Origins: Completing the Transition to Land, Academic Press, San Diego, CA, pp. 291–326.

    Google Scholar 

  12. J. P. Hill (1933). The development of the Monotremata. Part II. The structure of the eggshell. Trans.Zool.Soc.Lond.21: 443–477.

    Google Scholar 

  13. R. L. Hughes (1993). Monotreme development with particular reference to the extraembryonic membranes. J.Exp.Zool. 266: 480–494.

    PubMed  Google Scholar 

  14. K. F. Hirsch (1994). The fossil record of vertebrate eggs. In S. Donovan (ed.), The Paleobiology of Trace Fossils, Wiley, London, pp. 269–294.

    Google Scholar 

  15. K. Carpenter, K. F. Hirsch, and J. R. Horner (eds.) (1994). Dinosaur Eggs and Babies, Cambridge University Press, Cambridge, England.

    Google Scholar 

  16. K. F. Hirsch and D. K. Zelenitsky (1997). Dinosaur eggs. In J. O. Farlow and M. K. Brett-Surman (eds.), The Complete Dinosaur, Indiana University Press, Bloomington, IN, pp. 394–402.

    Google Scholar 

  17. A. S. Romer and L. W. E. Price (1940). Review of the Pelycosauria. Geol. Soc. Am. Spec. Pap.28: 1–538.

    Google Scholar 

  18. A. S. Romer (1957). Origin of the amniote egg. Sci. Mon.85: 57–63.

    Google Scholar 

  19. K. F. Hirsch (1986). Not every “egg” is an egg. J. Vert. Paleontol.6: 200–201.

    Google Scholar 

  20. R. L. Hughes (1977). Egg membranes and ovarian function during pregnancy in monotremes and marsupials. In J. H. Calaby and C. H. Tyndale-Biscoe (eds.), Reproduction and Evolution.Proceedings of the Fourth Symposium on Comparative Biology of Reproduction, held in Canberra, December 1976, Austalian Academy of Science, Canberra City, Australia, pp. 281–291.

    Google Scholar 

  21. M. Griffiths (1978). Biology of the Monotremes, Academic Press, New York.

    Google Scholar 

  22. G. C. Packard and M. J. Packard (1988). The physiological ecology of reptilian eggs and embryos. In C. Gans and R. B. Huey (eds.), Biology of the Reptilia: Vol.16 B.Defense and Life History, Alan R. Liss, New York, pp. 523–605.

    Google Scholar 

  23. A. Ar (1991). Roles of water in eggs. In D. C. Deeming and M. W. J. Ferguson (eds.), Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, Cambridge University Press, Cambridge, England, pp. 229–243.

    Google Scholar 

  24. D. C. Deeming and M. B. Thompson (1991). Gas exchange across reptilian eggshells. In D. C. Deeming and M. W. J. Ferguson (eds.), Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, Cambridge University Press, Cambridge, England, pp. 277–284.

    Google Scholar 

  25. R. A. Ackerman, R. Dmi'el, and A. Ar (1985). Energy and water vapor exchange by parchment-shelled reptile eggs. Physiol. Zool. 58: 129–137.

    Google Scholar 

  26. S. C. Manolis, G. J. W. Webb, and K. E. Dempsey (1987). Crocodile egg chemistry. In G. J. W. Webb, S. C. Manolis, and P. J. Whitehead (eds.), Wildlife Management: Crocodiles and Alligators, Surrey Beatty, Sydney, Australia, pp. 445–472.

  27. P. R. Sotherland and H. Rahn (1987). On the composition of bird eggs. The Condor89: 48–65.

    Google Scholar 

  28. L. J. Vitt (1978). Caloric content of lizard and snake (Reptilia) eggs and bodies and the conversion of weight to caloric data. J. Herpet. 12: 65–72.

    Google Scholar 

  29. C. Carey (1986). Tolerance of variation in eggshell conductance, water loss, and water content by red-winged blackbird embryos. Physiol. Zool. 59: 109–122.

    Google Scholar 

  30. C. R. Tracy and H. L. Snell (1985). Interrelations among water and energy relations of reptilian eggs, embryos and hatchlings. Am. Zool. 25: 999–1008.

    Google Scholar 

  31. G. F. Birchard and D. Marcellini (1996). Incubation time in reptilian eggs. J.Zool., Lond. 240: 621–635.

    Google Scholar 

  32. C. V. Paganelli (1991). The avian eggshell as a mediating barrier: Respiratory gas fluxes and pressures during development. In D. C. Deeming and M. W. J. Ferguson (eds.), Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, Cambridge University Press, Cambridge, England, pp. 261–275.

    Google Scholar 

  33. M. J. Packard, G. C. Packard, and T. J. Boardman (1982). Structure of eggshells and water relations of reptilian eggs. Herpeto-logica 38: 136–155.

    Google Scholar 

  34. G. C. Packard (1991). The physiological and ecological importance of water to embryos of oviparous reptiles. In D. C. Deeming and M. W. J. Ferguson (eds.), Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, Cambridge University Press, Cambridge, England, pp. 213–228.

    Google Scholar 

  35. G. C. Packard (1999). Water relations of chelonian eggs and embryos: Is wetter better? Am.Zool. 39: 289–303.

    Google Scholar 

  36. D. H. Erwin (1993). The Great Paleozoic Crisis: Life and Death in the Permian, Columbian University Press, New York.

    Google Scholar 

  37. M. J. Benton (1997). Vertebrate Paleontology, 2nd edn., Chapman & Hall, London.

    Google Scholar 

  38. J. B. Iverson and M. A. Ewert (1991). Physical characteristics of reptilian eggs and a comparison with avian eggs. In D. C. Deeming and M. W. J. Ferguson (eds.), Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, Cambridge University Press, Cambridge, England, pp. 87–100.

    Google Scholar 

  39. I. H. M. Smart (1991). Egg-shape in birds. In D. C. Deeming and M. W. F. Ferguson (eds.), Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, Cambridge University Press, Cambridge, England, pp. 101–116.

    Google Scholar 

  40. W. P. Coombs (1989). Modern analogs for dinosaur nesting and parental behavior. In J. O. Farlow (ed.), Paleobiology of the Di-nosaurs, Special Paper 238, The Geological Society of America, Boulder, CO, pp. 21–53.

  41. R. A. Ackerman (1991). Physical factors affecting the water exchange of buried reptile eggs. In D. C. Deeming and M. W. J. Ferguson (eds.), Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, Cambridge University Press, Cambridge, England, pp. 193–211.

    Google Scholar 

  42. P. J. Kramer and J. S. Boyer (1995). Water Relations of Plants and Soils, Academic Press, San Diego, CA.

    Google Scholar 

  43. A. Muth (1981). Water relations of desert iguana (Dipsosaurus dorsalis) eggs. Physiol.Zool.54: 441–451.

    Google Scholar 

  44. D. Vleck (1991). Water economy and solute regulation of reptilian and avian embryos. In D. C. Deeming and M. W. J. Ferguson (eds.), Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, Cambridge University Press, Cambridge, England, pp. 245–259.

    Google Scholar 

  45. P. R. Sotherland, M. D. Ashen, R. D. Shuman, and C. R. Tracy (1984). The water balance of bird eggs incubated in water. Physiol.Zool. 57: 338–348.

    Google Scholar 

  46. M.B. Thompson (1987). Water exchange in reptilian eggs. Physiol.Zool. 60: 1–8.

    Google Scholar 

  47. C. P. Black, G. F. Birchard, G. W. Schuett, and V. D. Black (1984). Influence of incubation substrate water content on oxygen uptake in embryos of the Burmese python (Python molu-rus). In R. S. Seymour (ed.), Respiration and Metabolism of Embryonic Vertebrates, W. Junk, Dordrecht, The Netherlands, pp. 137–145.

    Google Scholar 

  48. L. H. S. Van Mierop and S. M. Barnard (1978). Further observations on thermoregulation in the brooding female Python molurus bivittatus (Serpentes: Bopidae). Copeia 1978: 615–621.

    Google Scholar 

  49. P. Michaelson (2002). Mass extinction of peat-forming plants and the effect on fluvial styles across the Permian-Triassic boundary, northern Bowen Basin, Australia. Palaeogeogr.Palaeoclimatol.Palaeoecol. 179: 173–188.

    Google Scholar 

  50. D. C. Deeming and M. W. J. Ferguson (1991). Physiological effects of incubation temperature on embryonic development in reptiles and birds. In D. C. Deeming and M. W. J. Ferguson (eds.), Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, Cambridge University Press, Cambridge, England, pp. 147–171.

    Google Scholar 

  51. P. Harlow and G. Grigg (1984). Shivering thermogenesis in a brooding diamond python, Python spilotes spilotes. Copeia 1984: 959–965.

    Google Scholar 

  52. M. H. Schweizer and C. L. Marshall (2001). Amolecular model for the evolution of endothermy in the theropod-bird lineage. J.Exp.Zool.(Mol.Dev.Evol.) 291: 317–338.

    Google Scholar 

  53. A. Ar and H. Rahn (1980). Water in the avian egg: Overall budget of incubation. Am.Zool. 20: 373–384.

    Google Scholar 

  54. C. Carey, S. D. Garber, E. L. Thompson, and F. C. James (1983). Avian reproduction over an altitudinal gradient. II. Physical characteristics and water loss of eggs. Physiol.Zool.56: 340–342.

    Google Scholar 

  55. Z. Arad, I. Gavrieli-levin, and J. Marder (1988). Adaptation of the pigeon egg to incubation in dry, hot environments. Physiol.Zool.61: 293–300.

    Google Scholar 

  56. C. Carey, F. Leon-Velarde, O. Dunin-Borkowskit, and C. Monge (1989). Shell conductance, daily water loss, and water content of Puna teal eggs. Physiol.Zool.62: 83–95.

    Google Scholar 

  57. D. T. Booth and H. Rahn (1990). Factors modifying rate of water loss from birds’ eggs during incubation. Physiol.Zool.63: 697–709.

    Google Scholar 

  58. D. T. Booth and P. R. Sotherland (1991). Oxygen consumption, air-cell gas tensions, and incubation parameters of mute swan eggs. Physiol.Zool.64: 473–484.

    Google Scholar 

  59. W. J. Hillenius (1992). The evolution of mammalian turbinates and mammalian endothermy. Paleobiology 18: 17–29.

    Google Scholar 

  60. W. J. Hillenius (1994). Turbinates in therapsids: Evidence for late Permian origins of mammalian endothermy. Evolution 48: 207–229.

    Google Scholar 

  61. A. de Ricqles (1974). Evolution of endothermy. Evol.Theor.1: 51–80.

    Google Scholar 

  62. A. Chinsamy and B. S. Rubidge (1993). Dicynodont (Therap-sida) bone histology: Phylogenetic and physiological implica-tions. Palaeontol.Afr.30: 97–102.

    Google Scholar 

  63. J. Botha and A. Chinsamy (2000). Growth patterns deduced from the bone histology of the cynodonts Diademodon and Cynognathus. J.Vert.Paleontol. 20: 705–711.

    Google Scholar 

  64. T. S. Kemp (1982). Mammal-like Reptiles and the Origin of Mammals, Academic Press, London.

    Google Scholar 

  65. W. Maier, J. van den Heever, and F. Durand (1996). New therapsid specimens and the origin of the secondary hard and soft palate of mammals. J.Zool.Syst.Evol.Res. 34: 9–19.

    Google Scholar 

  66. R. W. Blob (2001). Evolution of hindlimb posture in non-mammalian therapsids: Biomechanical tests of paleontological hypotheses. Paleobiology 27: 14–38.

    Google Scholar 

  67. J. Ruben (1995). The evolution of endothermy in mammals and birds: From physiology to fossils. Ann.Rev.Physiol.57: 69–95.

    Google Scholar 

  68. G. H. Groenewald, J. Welman, and J. A. MacEachern (2001). Vertebrate burrow complexes from the early Tri-asic Cynognathus Zone (Driekoppen Formation, Beaufort Group) of the Karoo Basin, South Africa. Palaios 16: 148–160.

    Google Scholar 

  69. F. G. Benedict (1932). The Physiology of Large Reptiles With Special Reference to the Heat Production of Snakes, Tor-toises, Lizards and Alligators, Carnegie Institute of Washington, Washington, DC.

    Google Scholar 

  70. L. H. S. Van Mierop and S. M. Barnard (1976). Thermoregulation in a brooding female Python molurus bivittata (Serpentes: Boidae). Copeia 1976: 398–401.

    Google Scholar 

  71. D. Randall, B. Gannon, S. Runciman, and R. V. Baudinette (1984). Gas transfer by the neonate in the pouch of the tammar wallaby, Macropus eugenii. In R. S. Seymour (ed.), Respiration and Metabolism of Embryonic Vertebrates, W. Junk, Dordrecht, The Netherlands, pp. 423–436.

    Google Scholar 

  72. H. Burrell (1974). The Platypus, Rigby, Adelaide, Australia. (Originally published in 1927)

    Google Scholar 

  73. M. J. Novacek, G. W. Rougier, J. R. Wible, M. C. McKenna, D. Dashzeveg, and I. Horovitz (1997). Epipubic bones in eutherian mammals from the Late Cretaceous of Mongolia. Nature 389: 483–486.

    PubMed  Google Scholar 

  74. Q. Ji, Z.-X. Luo, C.-X. Yuan, J. R. Wible, J.-P. Zhang, and J. A. Georgi (2002). The earliest known eutherian mammal. Nature 416: 816–822.

    PubMed  Google Scholar 

  75. C. Darwin (1872). On the Origin of Species by Means of Natural Selection, 6th edn., Appleton-Century-Crofts, New York.

    Google Scholar 

  76. J. A. Lillegraven (1979). Reproduction in Mesozoic mammals. In J. A. Lillegraven, Z. Kielan-Jaworowska, and W. A. Clemens (eds.), Mesozoic Mammals: The First Two-Thirds of Mam-malian History, University of California Press, Berkeley, CA, pp. 259–276.

    Google Scholar 

  77. H. Tyndale-Biscoe and M. Renfree (1987). Reproductive Physiology of Marsupials, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  78. T. D. White (1989). An analysis of epipubic bone function in mammals using scaling theory. J. Theor. Biol. 138: 343–357.

    Google Scholar 

  79. T. L. Taigen, F. H. Pough, and M. M. Stewart (1984). Water balance of terrestrial anuran (Eleutherodactylus coqui) eggs: Importance of parental care. Ecology65: 248–255.

    Google Scholar 

  80. Y. Handrich (1989). Incubation water loss in king penguin egg. I. Change in egg and brood pouch parameters. Physiol. Zool. 62: 96–118.

    Google Scholar 

  81. Y. Handrich (1989). Incubation water loss in king penguin egg. II. Does the brood patch interfere with eggshell conductance? Physiol. Zool.62: 119–132.

    Google Scholar 

  82. J. R. Stewart and M. B. Thompson (2000). Evolution of placentation among squamate reptiles: Recent research and future directions. Comp. Biochem. Physiol. A127: 411–431.

    Google Scholar 

  83. C. P. Qualls (1996). Influence of evolution of viviparity on eggshell morphology in the lizard Lerista bougainvillii. J. Mor-phol. 226: 119–125.

    Google Scholar 

  84. M. J. Packard and N. B. Clark (1996). Aspects of calcium regulation in embryonic lepidosaurians and chelonians and a review of calcium regulation in embryonic archosaurians. Physiol. Zool.69: 435–466.

    Google Scholar 

  85. B. E. Dunn and T. P. Fitzharris (1987). Endocytosis in the embryonic chick chorionic epithelium. J. Exp. Zool.(Suppl. 1) 1: 75–79.

    Google Scholar 

  86. M. B. Thompson, B. K. Speake, K. J. Russell, and R. J. McCartney (2001). Utilization of lipids, proteins, ions and energy during embryonic development of Australian oviparous skinks in the genus Lampropholis. Comp. Biochem. Physiol. A129: 313–326.

    Google Scholar 

  87. A. L. Romanoff (1967). Biochemistry of the Avian Embryo, Wiley, New York.

    Google Scholar 

  88. L. H. Hoffman (1970). Placentation in the garter snake, Thamnophis sirtalis. J. Morphol. 131: 57–88.

    Google Scholar 

  89. J. R. Stewart (1993). Yolk sac placentation in reptiles: Structural innovation in a fundamental vertebrate fetal nutritional system. J. Exp. Zool. 266: 431–449.

    Google Scholar 

  90. A. D. Phillott and C. J. Parmenter (2001). Influence of diminished respiratory surface area on survival of sea turtle embryos. J.Exp.Zool.289: 317–321.

    PubMed  Google Scholar 

  91. G. F. Birchard and C. L. Reiber (1993). A comparison of avian and reptilian chorioallantoic vascular density. J.Exp.Biol. 178: 245–249.

    Google Scholar 

  92. R. Swain and S. M. Jones (1997). Maternal-fetal transfer of 3H-labelled leucine in the viviparous lizard Niveoscincus metallicus (Scincidae: Lygosominae). J.Exp.Zool. 277: 139–145.

    Google Scholar 

  93. T. T. Flynn and J. P. Hill (1947). The development of the Monotremata. Part VI. The later stages of cleavage and the formation of the primary germ layers. Trans. Zool. Soc. Lond. 26: 1–151.

    Google Scholar 

  94. R. L. Hughes (1984). Structural adaptations of the eggs and fetal membranes of monotremes and marsupials for respiratory and metabolic exchange. In R. S. Seymour (ed.), Respiration and Metabolism of Embryonic Vertebrates, W. Junk, Dordrecht, The Netherlands, pp. 389–421.

    Google Scholar 

  95. M. Griffiths, D. L. McIntosh, and R. E. A. Coles (1969). The mammary gland of the echidna, Tachyglossus aculeatus, with observations on the incubation of the egg and on the newly-hatched young. J.Zool., Lond. 158: 371–386.

    Google Scholar 

  96. R. Joseph and M. Griffiths (1992). Whey proteins in early and late milks of monotremes (Monotremata: Tachyglossidae, Ornithorhynchidae) and of the tammar wallaby (Macropus eugenii, Marsupialia: Macropodidae). Aust.Mammal 15: 125–127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oftedal, O.T. The Origin of Lactation as a Water Source for Parchment-Shelled Eggs. J Mammary Gland Biol Neoplasia 7, 253–266 (2002). https://doi.org/10.1023/A:1022848632125

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022848632125

Navigation