Skip to main content
Log in

Analysing protein-protein interactions with the yeast two-hybrid system

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Plant research is moving into the post-genomic era. Proteomic-based strategies are now being developed to study functional aspects of the genes predicted from the various genome-sequencing initiatives. All biological processes depend on interactions formed between proteins and the mapping of such interactions on a global scale is providing interesting functional insights. One of the techniques that has proved itself invaluable in the mapping of protein-protein interactions is the yeast two-hybrid system. This system is a sensitive molecular genetic approach for studying protein-protein interactions in vivo. In this review we will introduce the yeast two-hybrid system, discuss modifications of the system that may be of interest to the plant science community and suggest potential applications of the technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aronheim, A., Zandi, E., Hennemann, H., Elledge, S.J. and Karin, M. 1997. Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Mol. Cell Biol. 17: 3094–3102.

    Google Scholar 

  • Brent, R. and Finley, R.L. 1997. Understanding gene and allele function with two-hybrid methods. Annu. Rev. Genet. 31: 663–704.

    Google Scholar 

  • Brent, R. and Ptashne, M. 1984. A bacterial repressor protein or a yeast transcriptional terminator can block upstream activation of a yeast gene. Nature 312: 612–615

    Google Scholar 

  • Broder, Y.C., Katz, S. and Aronheim, A. 1998. The Ras recruitment system, a novel approach to the study of protein-protein interactions. Curr. Biol. 8: 1121–1124.

    Google Scholar 

  • Causier, B., Weir, I. and Davies, B. 1999. MADS-box factors in hermaphrodite flower development. In: C.C. Ainsworth (Ed.) Sex Determination in Plants, Bios Scientific Publishers, Oxford, pp. 1–23.

    Google Scholar 

  • Colas, P. and Brent, R. 1998. The impact of two-hybrid and related methods on biotechnology. Trends Biotechnol. 16: 355–363.

    Google Scholar 

  • Davies, B., Egea-Cortines, M., de Andrade Silva, E., Saedler, H. and Sommer, H. 1996. Multiple interactions amongst floral homeotic proteins. EMBO J. 15: 4330–4343.

    Google Scholar 

  • Dent, C.L., Smith, M.D. and Latchman, D.S. 1999. The DNA mobility shift assay. In: D.S. Latchman (Ed.) Transcription Factors: A Practical Approach, Oxford University Press, Oxford, pp. 1–25.

    Google Scholar 

  • Egea-Cortines, M., Saedler, H. and Sommer, H. 1999. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18: 5370–5379.

    Google Scholar 

  • Ellis et al.-this issue

  • Fashena, S.J., Serebriiskii, I. and Golemis, E.A. 2000. The continued evolution of two-hybrid screening approaches in yeast: how to outwit different preys with different baits. Gene 250: 1–14.

    Google Scholar 

  • Fields, S. and Song, O.-K. 1989. A novel genetic system to detect protein-protein interactions. Nature 340: 245–246.

    Google Scholar 

  • Gietz, R.D. and Schiestl, R.H. 1995. Transforming yeast with DNA. Meths Mol Cell Biol 5: 255–269.

    Google Scholar 

  • Gyuris, J., Golemis, E., Chertov, H. and Brent, R. 1993. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75: 791–803.

    Google Scholar 

  • Honma, T. and Goto, K. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525–529.

    Google Scholar 

  • Jarillo, J.A., Capel, J., Tang, R.H., Yang, H.Q., Alonso, J.M., Ecker, J.R. and Cashmore, A.R. 2001. An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature 410: 487–490.

    Google Scholar 

  • Johnsson, N. and Varshavsky, A. 1994. Split ubiquitin as a sensor of protein interactions in vivo. Proc. Natl. Acad. Sci. USA 91: 10340–10344.

    Google Scholar 

  • Joung, J.K., Ramm, E.I. and Pabo, C.O. 2000. A bacterial twohybrid selection system for studying protein-DNA and proteinprotein interactions. Proc. Natl. Acad. Sci. USA 97: 7382–7387.

    Google Scholar 

  • Leanna, C.A. and Hannink, M. 1996. The reverse two-hybrid system: a genetic scheme for selection against specific protein/ protein interactions. Nucl. Acids Res. 24: 3341–3347.

    Google Scholar 

  • Long, J.A., Moan, E.I., Medford, J. and Barton, M.K. 1996. A member of the KNOTTED class of homeodomain proteins encoded by the SHOOTMERISTEMLESS gene of Arabidopsis. Nature 379: 66–69.

    Google Scholar 

  • Luo, Y., Batalao, A., Zhou, H. and Zhu, L. 1997. Mammalian two-hybrid system. A complementary approach to the yeast two-hybrid system. Biotechniques 22: 350–352.

    Google Scholar 

  • Mazzurco, M., Sulaman,W., Elina, H., Cock, J.M. and Goring, D.R. 2001. Further analysis of the interactions between the Brassica S receptor kinase and three interacting proteins (ARC1, THL1 and THL2) in the yeast two-hybrid system. Plant Mol. Biol. 45: 365–376.

    Google Scholar 

  • Ouellet, F., Overvoorde, P.J. and Theologis, A. 2001. IAA17/AXR3: Biochemical insight into an auxin mutant phenotype. Plant Cell 13: 829–841.

    Google Scholar 

  • Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. and Yanofsky, M.F. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200–203.

    Google Scholar 

  • Rain, J.-C., Selig, L., De Reuse, H., Battaglia, V., Reverdy, C., Simon, S., Lenzen, G., Petel, F., Wojcik, J., Schächter, V., Chemama, V.Y., Labigne, A. and Legrain, P. 2001. The protein-protein interaction map of Helicobacter pylori. Nature 409: 211–215.

    Google Scholar 

  • Serebriiskii, I., Khazak, V. and Gomelis, E.A. 1999. A twohybrid dual bait system to discriminate specificity of protein interactions. J. Biol. Chem. 274: 17080–17087.

    Google Scholar 

  • Serebriiskii, I.G., Toby, G.G. and Golemis, E.A. 2000a. Two-hybrid system for the characterization of protein-protein interactions in E. coli. Biotechniques 29: 288–296.

    Google Scholar 

  • Serebriiskii, I.G., Estojak, J., Berman, M. and Golemis, E.A. 2000b. Approaches to detecting false positives in yeast two-hybrid systems. Biotechniques 28: 328–336.

    Google Scholar 

  • Stagljar, I., Korostensky, C., Johnsson, N. and Te Heesen, S. 1998. A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc. Natl. Acad. Sci. USA 95: 5187–5192.

    Google Scholar 

  • Uetz, P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S. and Rothberg, J.M. 2000. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403: 623–627.

    Google Scholar 

  • Vidal, M., Brachmann, R.K., Fattaey, A., Harlow, E. and Boeke, J.D. 1996a. Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc. Natl. Acad. Sci. USA 93: 10315–10320.

    Google Scholar 

  • Vidal, M., Braun, P., Chen, E., Boeke, J.D. and Harlow, E. 1996b. Genetic characterization of a mammalian protein-protein interaction domain by using a yeast reverse two-hybrid system. Proc. Natl. Acad. Sci. USA 93: 10321–10326.

    Google Scholar 

  • Visser-this issue

  • Vitale-this issue

  • Walhout, A.J.M., Sordella, R., Lu, X., Hartley, J.L., Temple, G.F., Brasch, M.A., Thierry-Mieg, N. and Vidal, M. 2000. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287: 116–122.

    Google Scholar 

  • Zhang, J. and Lautar, S. 1996. A yeast three-hybrid method to clone ternary protein complex components. Anal. Biochem. 242: 68–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Causier, B., Davies, B. Analysing protein-protein interactions with the yeast two-hybrid system. Plant Mol Biol 50, 855–870 (2002). https://doi.org/10.1023/A:1021214007897

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021214007897

Navigation