Skip to main content
Log in

Characterizing man-made and natural modifications of microbial diversity and activity in coastal ecosystems

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The impacts of growing coastal pollution and habitat alteration accompanying human encroachment are of great concern at the microbial level, where much of the ocean's primary production and biogeochemical cycling takes place. Coastal ecosystems are also under the influence of natural perturbations such as major storms and flooding. Distinguishing the impacts of natural and human stressors is essential for understanding environmentally-induced change in microbial diversity and function. The objective of this paper is to discuss the applications and merits of recently developed molecular, ecophysiological and analytical indicators and their utility in examining anthropogenic and climatic impacts on the structure and function of coastal microbial communities. The nitrogen-limited Neuse River Estuary and Pamlico Sound, North Carolina are used as examples of ecosystems experiencing both anthropogenic (i.e., accelerating eutrophication) and climatic stress (increasing frequencies of tropical storms and hurricanes). Additional examples are derived from a coastal monitoring site (LEO) on the Atlantic coast of New Jersey and Galveston Bay, on the Gulf of Mexico. In order to assess structure, function, and trophic state of these and other coastal ecosystems, molecular (DNA and RNA-based) characterizations of the microbial taxa involved in carbon, nitrogen and other nutrient transformations can be combined with diagnostic pigment-based indicators of primary producer groups. Application of these methods can reveal process-level microbial community responses to environmental variability over a range of scales. Experimental approaches combined with strategic monitoring utilizing these methods will facilitate: (a) understanding organismal and community responses to environmental change, and (b) synthesizing these responses in the context of ecosystem models that integrate physical, chemical and biotic variability with environmental controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Affourtit J, Zehr JP & Paerl HW (2001) Distribution of nitrogen-fixing microorganisms along the Neuse River Estuary, North Carolina. Microbial Ecol. 41: 114–123.

    CAS  Google Scholar 

  • Amann RI, Ludwig W & Schleifer K-H (1995) Phylogentic identification and in situ detedction of individual microbial cells without cultivation. Microbiol. Rev. 59(1): 143–169.

    PubMed  CAS  Google Scholar 

  • Ambio (1990) Marine Eutrophication. Ambio 19: 101–176.

    Google Scholar 

  • Antia NP, Harrison, G & Oliveira L (1991) The role of dissolved organic nitrogen in phytoplankton nutrietion, cell biology and ecology. Phycologia 30: 1–89.

    Google Scholar 

  • Avaniss-Aghajani E, Jones K, et al. (1994) A molecular technique for identification of bacteria using small subunit ribosomal RNA sequences. Biotechniques 17(1): 144–6.

    PubMed  CAS  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA & Thingstadt F (1983) The ecological role of water-column microbes in the sea. Marine Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Banse K (1977) Determining the carbon-to-chlorophyll ratio of natural phytoplankton. Marine Biology 41: 199–212.

    Article  CAS  Google Scholar 

  • Benoit G, Oktay S, Cantu A, Hood ME, Coleman C, Corapcioglu O & Santschi PH (1994) Partitioning of Cu, Pb, Ag, Zn, Fe, Al, and Mn between filter-retained particles, colloids and solution in six Texas estuaries. Marine Chem. 45: 307–336.

    Article  CAS  Google Scholar 

  • Bowers HA, Tengs T, Glasgow, HBJr, Burkholder JM, Rublee PA & Oldach DW (2000) Development of real-time PCR assays for rapid detection of Pfiesteria piscicida and related dinoflagellates. Appl. Environ. Microbiol. 66: 4641–4648.

    Article  PubMed  CAS  Google Scholar 

  • Boyer JN, Stanley DW, & Christian RR (1994) Dynamics of NH4+ and NO3-uptake in the water column of the Neuse River Estuary, North Carolina. Estuaries 17: 361–371.

    Article  CAS  Google Scholar 

  • Boyton WR., Garber JH, Summers R & Kemp WM (1995) Inputs, transformations, and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries. Estuaries 18: 285–314.

    Article  Google Scholar 

  • Collos Y (1989) A linear model of external interactions during uptake of different forms of inorganic nitrogen by microalgae. J. Plankton Res. 11: 521–533.

    CAS  Google Scholar 

  • Copeland BJ & Gray J (1991) Status and Trends Report of the Albemarle-Pamlico Estuary. steel J (Ed), Albemarle-Pamlico Estuarine Study Report 90-01. NC Dept. of Environ. Health & Nat. Resources, Raleigh.

    Google Scholar 

  • Carmichael WW (1997) The cyanotoxins. Adv. Bot. Res. 27: 211–256.

    Article  CAS  Google Scholar 

  • Cloern JE, Grenz C & Vidergar-Lucas L (1995) An empirical model of the phytoplankton chlorophyll: carbon ratio - the conversion factor between productivity and growth rate. Limnol. Oceanogr. 40: 1313–1321.

    Google Scholar 

  • Cosper EM, Dennison WC, Carpenter EJ, Bricelj VM, Mitchell JG, Kuenstner SH, Colflesh D & Dewey M (1987) Recurrent and persistent brown tide blooms perturb coastal marine ecosystem. Estuaries 10: 284–290.

    Article  Google Scholar 

  • Cullen JJ (1990) On models of growth and photosynthesis in phytoplankton. Deep-Sea Res. 37: 667–683.

    Article  CAS  Google Scholar 

  • D'Elia CF, Sanders JG & Boynton WR (1986) Nutrient enrichment studies in a coastal plain estuary: phytoplankton growth in large scale, continuous cultures. Can. J. Fish aquat. Sci. 43: 397–406.

    Article  Google Scholar 

  • Degrange V & Bardin R (1995) Detection and counting of Nitrobacter populations in soil by PCR. Appl. Environ. Microbiol. 61(6): 2093–2098.

    PubMed  CAS  Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc. Natl. Acad. Sci. 89: 5685–5689.

    Article  PubMed  CAS  Google Scholar 

  • DeLong EF, Wickham GS & Pace NR (1989) Phylogenetic strains: Ribosomal RNA-based probes for the identification of single cells. Science 243: 1360–1363.

    PubMed  CAS  Google Scholar 

  • DeLong EF, Franks DG & Alldredge AL (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol. Oceanogr. 38: 924–934.

    Article  Google Scholar 

  • Fogg GE (1969) The physiology of an algal nuisance. Proc. Roy. Soc. Lond. B. 173: 175–189.

    Article  Google Scholar 

  • Field KG, Gordon D, Wright T, Rappe' M, Urbach E, Vergin K & Giovannoni SJ (1997) Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria. Appl. Environ. Microbiol. 63: 63–70.

    PubMed  CAS  Google Scholar 

  • Francis G (1878) Poisonous Australian lake. Nature (London) 18: 11–12.

    Google Scholar 

  • Fuhrman JA, McCallum K & Davis AA (1992) Novel major archaebacterial group from marine plankton. Nature (London) 356: 148–149.

    Article  CAS  Google Scholar 

  • Fuhrman JA, McCallum K & Davis AA (1993) Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific oceans. Appl. Environ. Microbiol. 59: 1294–1302.

    PubMed  CAS  Google Scholar 

  • Geider RJ, MacIntyre HL & Kana TM (1997) Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a: carbon ratio to light, nutrient-limitation and temperature. Marine Ecology Progress Series 148: 187–200.

    Google Scholar 

  • Gieskes W & Kraay G (1986) Floristic and physiological differences between the shallow and deep nanophytoplankton community in the eutrophic zone of the open tropical Atlantic revealed by HPLC analysis of pigments. Marine Biol. 91: 567–576.

    Article  CAS  Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL & Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature (London) 345: 148–149.

    Article  Google Scholar 

  • Glenn S, Crowley M, Haidvogel D & Song Y (1996) Underwater observatory captures coastal upwelling events off New Jersey. Eos 77: 233–36.

    Google Scholar 

  • Goericke R & Welschmeyer N (1993a) The carotenoid-labeling method: measuring specific rates of carotenoid synthesis in natural phytoplankton communities. Marine Ecol. Progr. Ser. 98: 157–171.

    CAS  Google Scholar 

  • Goericke R & Welschmeyer N (1993b) The chlorophyll-labeling method: measuring specific rates of chlorophyll a synthesis in cultures and in the open ocean. Limnol. Oceanogr. 38: 80–95.

    CAS  Google Scholar 

  • Goldenberg SB, Landsea CW, Mestas-NuZes AM & Gray WM (2001) The recent increase in Atlantic Hurricane Activity: Causes and implications. Science 293: 474–479.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez JM, Sherr EB & Sherr BF (1993) Differential feeding by marine flagellates on growing versus starving, and on motile versus nonmotile, bacterial prey. Marine Ecol. Progr. Ser. 102: 257–267.

    Google Scholar 

  • Gordon DA & Giovannoni SJ (1996) Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific Oceans. Appl. Environ. Microbiol. 2: 1171–1177.

    Google Scholar 

  • Gray WM, Sheaffer JD & Landsea CW (1996) Climate trends associated with multi-decadal variability of intense Atlantic hurricane activity. In: Diaz HF & Pulwarty PS (Eds) Hurricanes, Climatic Change and Socioeconomic Impacts: A Current Perspective (pp 293–312). Westview Press, Denver, Co.

    Google Scholar 

  • Gray WM et al. (1999) On the mark prediction caps 1999 season for Colorado State University Hurricane Forecast Team: Five year active trend bears out theory. http: //tropical.atmos.colostate.edu/fo recasts/1999/press99nov.html.

  • Gruntzig V, Nold SC, Zhou JZ & Tiedje JM (2001) Pseudomonas stutzeri nitrite reductase gene abundance in environmental samples measured by real-time PCR. Appl. Environ. Microbiol. 67(2): 760–768.

    Article  PubMed  CAS  Google Scholar 

  • Guo L & Santschi PH (1997) Isotopic and elemental characterization of colloidal organic matter from the Chesapeake Bay and Galveston Bay. Marine Chem. 59: 1–15.

    Article  CAS  Google Scholar 

  • Harrington MB (1999) Responses of natural phytoplankton communities from the Neuse River Estuary, NC to changes in nitrogen supply and incident irradiance. MSc thesis, Univ. of North Carolina, Chapel Hill, North Carolina, 89 p.

    Google Scholar 

  • Harrison P & Turpin D (1982) The manipulation of physical, chemical, and biological factors to select species from natural phytoplankton populations. In: Grice G & Reeve M (Eds) Marine Mesocosms: Biological and Chemical Research in Experimental Ecosystems (pp 275–287). Springer-Verlag, New York.

    Google Scholar 

  • Harrison W, Platt T & Lewis M (1987) F-ratio and its relationship to ambient nitrate concentration in coastal waters. J. Plankton Res. 9: 235–245.

    CAS  Google Scholar 

  • Hastings RC, Saunders JR, Hall GH, Pickup RW & McCarthy AJ (1998) Application of molecular biological techniques to a seasonal study of ammonia oxidation in a eutrophic freshwater lake. Appl. Environ. Microbiol. 64: 3674–3682.

    PubMed  CAS  Google Scholar 

  • Head IM, Saunders JR & Pickup RW (1998) Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microbial Ecol. 35: 1–21.

    Article  CAS  Google Scholar 

  • Hicks DC & Miller JR (1980) Meteorological forcing and bottom water movement off the northern New Jersey coast. Estuarine Coastal Sci. 2: 563–571.

    Google Scholar 

  • Horstmann U (1975) Eutrophication and mass production of bluegreen algae in the Baltic. Havforsk Skr 239: 83–90.

    CAS  Google Scholar 

  • Huber AL (1986) Nitrogen fixation by Nodularia spumigena Martens (Cyanobacteria). I. Field studies on the contribution of blooms to the nitrogen budget of the Peel-Harvey Estuary, Western Australia. Hydrobiologia 131: 193–203.

    Article  CAS  Google Scholar 

  • Hung C-C, Tang D, Warnken K & Santschi PH (2001) Distributions of carbohydrates, including uronic acids, in estuarine waters of Galveston Bay. Marine Chem. 73: 301–318.

    Article  Google Scholar 

  • Jeffrey S, Mantoura R & Wright S (Eds) (1997) Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. UNESCO, Paris.

    Google Scholar 

  • Karkhoff-Schweizer RR, Huber DPW & Voordouw G (1995) Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCR. Appl. Environ. Microbiol. 61: 290–296.

    PubMed  CAS  Google Scholar 

  • Kerkhof L (1992) A Comparison of substrates for quantifying the signal from a non-radiolabeled DNA probe. Anal. Biochem. 205: 359–364.

    Article  PubMed  CAS  Google Scholar 

  • Kerkhof L & Ward BB (1993) Comparison of nucleic acid hybridization and fluorometry for measurement of the relationship between RNA/DNA ratio and growth rate in a marine bacterium. Appl. Environ. Microbiol. 59: 1303–1309.

    PubMed  CAS  Google Scholar 

  • Kerkhof L & Kemp P (1999) Small ribosomal RNA content in marine bacteria during non-steady state growth. FEMS Microbial Ecol. 30: 253–260.

    Article  CAS  Google Scholar 

  • Kerkhof L, Santor, M & Garland J (2000) Response of Soybean Rhizosphere Communities to human hygiene water addition as determined by community-level physiological profiling (CLPP) and terminal restriction fragment length polymorphism (TRFLP). FEMS Microbiol. Lett. 184: 95–101.

    Article  PubMed  CAS  Google Scholar 

  • Kirshtein JD, Paerl HW & Zehr JP (1991) Amplification, cloning, and sequencing of a nifH segment from aquatic microorganisms and natural communities. Appl. Environ. Microbiol. 57: 2645–2650.

    PubMed  CAS  Google Scholar 

  • Laroche J, Nuzzi R, Waters R, Wyman K, Falkowski PG & Wallace DWR (1997) Brown tide blooms in Long Island's coastal waters linked to interannual variability in groundwater flow. Global Change Biol. 3: 397–410.

    Article  Google Scholar 

  • Landsea CW, Pielke RA Jr., Mestaz-Nunez AM & Knaff JA (1999) Atlantic basin hurricanes: Indices of climatic changes. Climatic Changes 42: 89–129.

    Article  Google Scholar 

  • Liu WT et al. (1997). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16s rRNA. Appl. Environ. Microbiol. 63: 4516–4522.

    PubMed  CAS  Google Scholar 

  • MacGregor BJ, Van Mooy B, Baker BJ, Mellon M, Moisander PH, Paerl HW, Zehr JP, Hollander D & Stahl DA (2001) Microbiological, molecular biological, and stable isotopic evidence for nitrogen fixation in the open waters of Lake Michigan. Environ. Microbiol. 3: 205–219.

    Article  PubMed  CAS  Google Scholar 

  • Mackey M, Mackey D, Higgins H & Wright S (1996) CHEMTAX - a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Marine Ecol. Progr. Ser. 144: 265–283.

    CAS  Google Scholar 

  • Massana R, Taylor LT, Murray AE, Wu KY, Jeffrey WH & DeLong EF (1998) Vertical distribution and temporal variation of marine planktonic Archaea in the Gerlache Strait, Antarctica, during early spring. Limnol. Oceanogr. 43: 607–617.

    CAS  Google Scholar 

  • McBride R & Moslow T (1991) Origin, evolution, and distribution of shoreface sand ridges, Atlantic inner shelf. USA. Marine Geol. 97: 57–85.

    Article  Google Scholar 

  • McCarthy J (1981) The kinetics of nutrient utilization. In: Platt T (Ed.) Physiological Bases of Phytoplankton Ecology. Can. Bull. Fish. aquat. Sci. 210: 211–233.

    Google Scholar 

  • McDonald IR & Murrell JC (1997) The particulate methane monoxigenase gene pmoA and its use as a functional gene probe for methanotrophs. FEMS Microbiol. Lett. 156: 205–210.

    Article  PubMed  CAS  Google Scholar 

  • Millie DF, Paerl HW & Hurley J (1993) Microalgal pigment assessments using high performance liquid chromatography: A synopsis of organismal and ecological applications. Can. J. Fish. aquat. Sci. 50: 2513–2527.

    Article  CAS  Google Scholar 

  • Moisander PH, Kononen K & Paerl HW (2000) Growth, primary productivity, and nitrogen fixation potential of Nodularia spp. (Cyanophyceae) in water from a subtropical estuary in the United States. J. Phycol. 36: 645–658.

    Article  CAS  Google Scholar 

  • Molloy C & Syrett P (1988) Interrelationships between uptake of urea and uptake of ammonium by microalgae. J. Exp. Marine Biol. 118: 85–95.

    Article  Google Scholar 

  • Monger BC & Landry MR (1990) Direct-interception feeding by marine zooflagellates: The importance of surface and hydrodynamic forces. Marine Ecol. Progr. Ser. 65: 123–140.

    Google Scholar 

  • Morse J, Presley B, Taylor R, Benoit G & Santschi P (1993) Trace metal chemistry of Galveston Bay: Water, sediments, and biota. Marine Environ. Res. 36: 1–37.

    Article  CAS  Google Scholar 

  • Munson MA, Nedwell DB & Embley TM (1997) Phylogenetic diversity of Archaea in sediment samples from a coastal salt marsh. Appl. Environ. Microbiol. 63: 4729–4733.

    PubMed  CAS  Google Scholar 

  • Murray AE, Hollibaugh JT & Orrego C (1996) Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient gel electrophoresis of 16S rDNA fragments. Appl. Environ. Microbiol. 62: 2676–2680.

    PubMed  CAS  Google Scholar 

  • Niemi A (1979) Blue-green algal blooms and N: P ratio in the Baltic Sea. Acta Botanica Fennica 110: 57–61.

    CAS  Google Scholar 

  • Nixon SW (1986) Nutrient dynamics and the productivity of marine coastal waters. In: Halwagy R, Clayton D & Behbehani M (Eds) (pp 97–115). The Alden Press, Oxford.

    Google Scholar 

  • Nixon SW (1995) Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia 41: 199–220.

    Google Scholar 

  • Olson JB, Litaker RW & Paerl HW (1999) Ubiquity of heterotrophic diazotrophs in marine microbial mats. Aquatic Microbial Ecol. 19: 29–36.

    Google Scholar 

  • Paerl HW (1982) Interactions with bacteria. In: Carr NG & Whitton BA (Eds) The Biology of Cyanobacteria (pp 441–461). Blackwell Scientific, Oxford.

    Google Scholar 

  • Paerl HW (1983) Factors regulating nuisance blue-green algal bloom potentials in the lower Neuse River. Report No. 177, UNC Water Resources Research Institute, Raleigh, NC. 139 p.

    Google Scholar 

  • Paerl HW (1987) Dynamics of blue-green algal (Microcystis aeruginosa) blooms in the lower Neuse River, NC: causative factors and potential controls. Report No. 229. UNC Water Resources Research Institute, Raleigh, NC. 164 p.

    Google Scholar 

  • Paerl HW (1988a) Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnol. Oceanogr. 33: 823–847.

    Article  CAS  Google Scholar 

  • Paerl HW (1988b) Growth and reproductive strategies of freshwater blue-green algae (cyanobacteria). In: Sandgren CD (Ed) Growth and Reproductive Strategies of Freshwater Phytoplankton (pp 261–315). Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Paerl HW (1990) Physiological ecology and regulation of N2 fixation in natural waters. Adv. Microbial Ecol. 11: 305–344.

    CAS  Google Scholar 

  • Paerl HW (1995) Coastal eutrophication in relation to atmospheric nitrogen deposition: current perspectives. Ophelia 41: 237–259.

    Google Scholar 

  • Paerl HW (1996) A comparison of cyanobacterial bloom dynamics in freshwater, estuarine and marine environments. Phycologia 35: 25–35.

    Article  Google Scholar 

  • Paerl HW (1997) Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources. Limnol. Oceanogr. 42: 1154–1165.

    Article  CAS  Google Scholar 

  • Paerl HW & Bowles ND (1987) Dilution bioassays: Their application to assessments of nutrient limitation in hypereutrophic waters. Hydrobiologia 146: 265–273.

    Article  CAS  Google Scholar 

  • Paerl HW & Fogel ML (1994) Isotopic characterization of atmospheric nitrogen inputs as sources of enhanced primary production in coastal Atlantic Ocean waters. Marine Biol. 119: 635–645.

    Article  Google Scholar 

  • Paerl HW & Pinckney JL (1996) Microbial consortia: Their role in aquatic production and biogeochemical cycling. Microbial Ecol. 31: 225–247.

    Article  Google Scholar 

  • Paerl HW, Rudek J & Mallin MA (1990) Stimulation of phytoplankton production in coastal waters by natural rainfall inputs: nutritional and trophic implications. Marine Biol. 107: 247–254.

    Article  Google Scholar 

  • Paerl HW, Mallin MA, Donahue CA, Go M & Peierls BL (1995) Nitrogen loading sources and eutrophication of the Neuse River Estuary, NC: Direct and indirect roles of atmospheric deposition. Report. 291, UNC Water Resources Research Institute, Raleigh, NC 119 p.

    Google Scholar 

  • Paerl HW & Millie DF (1996) Physiological ecology of toxic cyanobacteria. Phycologia 35(6): 160–167.

    Article  Google Scholar 

  • Paerl HW & Zehr JP (2000) Nitrogen Fixation. In: Kirchman D (Ed) Microbial Ecology of the Oceans (pp 387–426). Academic Press, New York.

    Google Scholar 

  • Paerl HW, Bales JD, Ausley LW, Buzzelli CP, Crowder LB, Eby LA, Go M, Peierls BL, Richardson TL & Ramus JS (2000) Hurricanes' hydrological, ecological effects linger in major US estuary. EOS 81(40): 457–462.

    Google Scholar 

  • Paerl HW, Bales JD, Ausley LW, Buzzelli CP, Crowder LB, Eby LA, Fear JM, Go M, Peierls BL, Richardson TL & Ramus JS (2001) Ecosystem impacts of 3 sequential hurricanes (Dennis, Floyd and Irene) on the US's largest lagoonal estuary, Pamlico Sound, NC. Proc. Natl. Acad. Sci. USA 98: 5655–5660.

    Article  PubMed  CAS  Google Scholar 

  • Paul JH, Kang B & Tabita RF (2000) Diel Patterns of Regulation of rbcL Transcription in a Cyanobacterium and a Prymnesiophyte. Marine Biotechnol. 2: 429–436.

    CAS  Google Scholar 

  • Pearce JB, Berman CR Jr & Rosen MR (1982) Annual NEMP report on the health of the northeast coastal waters. NOAA Technical Memorandum NMFS-F/NEC-35, Northeast Fisheries Center. Woods Hole. MA.

    Google Scholar 

  • Peierls BL & HW Paerl (1997) The bioavailability of atmospheric organic nitrogen deposition to coastal phytoplankton. Limnol. Oceanogr. 42: 1819–1880.

    Article  CAS  Google Scholar 

  • Phelps C, Kerkhof L & Young L (1998) Molecular characterization of a sulfate-reducing consortium which mineralizes benzene. FEMS Microbial Ecol. 27: 269–279.

    Article  CAS  Google Scholar 

  • Pichard SL, Campbell L & Paul JH (1997) Diversity of the ribulose bisphosphate carboxylase/oxygenase form I gene (rbcL) in natural phytoplankton communities. Appl. Environ. Microbiol. 63: 3600–3606.

    PubMed  CAS  Google Scholar 

  • Pinckney JL, Millie DF, Howe KE, Paerl HW & Hurley J (1996) Flow scintillation counting of 14C-labeled microalgal photosynthetic piments. J. Plankton Res. 18: 1867–1880.

    CAS  Google Scholar 

  • Pinckney JL, Millie DF, Vinyard B & Paerl HW (1997) Environmental controls of phytoplankton bloom dynamics in the Neuse River Estuary (North Carolina, USA). Can. J. Fish. aquat. Sci. 54: 2491–2501.

    Article  Google Scholar 

  • Pinckney JL, Paerl HW & Harrington MB (1999) Responses of the phytoplankton community growth rate to nutrient pulses in variable estuarine environments. J. Phycol. 35: 1455–1463.

    Article  CAS  Google Scholar 

  • Pinckney LJ, Richardson TL, Millie DF & Paerl HW (2001) Application of photopigment biomarkers for quantifying microalgal community composition and in situ growth rates. Organic Geochem. 32: 585–595.

    Article  CAS  Google Scholar 

  • Porter KG & Orcutt JD (1980) Nutritional adequacy, manageability, and toxicity as factors that determine the food quality of green and blue-green algae as food for Daphnia. In: Kerfoot WC (Ed) Evolution and Ecology of Zooplankton Communities (pp 268–281). Univ. Press of New England, Hannover.

    Google Scholar 

  • Rappe MS, Suzuki MT, Vergin KL & Giovannoni SJ (1998) Phylogenetic diversity of ultraplankton plastid small-subunit rRNA genes recovered in environmental nucleic acid samples from the Pacific and Atlantic coasts of the United States. Appl. Environ. Microbiol. 64: 294–303.

    PubMed  CAS  Google Scholar 

  • Redalje D (1993) The labeled chlorophyll a technique for determining photoautotrophic carbon specific growth rates and carbon biomass. In: Kemp P, Sherr B, Sherr E & Cole J (Eds) Handbook of Methods in Aquatic Microbial Ecology (pp 563–572) Lewis Publishing Co., Boca Raton, FL.

    Google Scholar 

  • Redalje DG & Laws EA (1981) A new method for estimating phytoplankton growth rates and carbon biomass. Marine Biol. 62: 73–79.

    Article  CAS  Google Scholar 

  • Richardson K (1997) Harmful or exceptional phytoplankton blooms in the marine ecosystem. Adv. Marine Biol. 31: 302–385.

    Google Scholar 

  • Riegman R (1995) Nutrient-related selection mechanisms in marine phytoplankton communities and the impact of eutrophication on the planktonic food web. IAWQ SIL Conference on Selection Mechanisms Controlling Biomass Distribution. Noordwykerhout, the Netherlands 32: 4.

    Google Scholar 

  • Riemann B, Lignell R & Laws E (1993) Time-course development of 14C specific activity of chlorophyll a, carbon, and proteins in algal cultures. Limnol. Oceanogr. 38: 96–111.

    CAS  Google Scholar 

  • Rizzo WG, Lackey G & Christian RR (1992) Significance of euphotic, subtidal sediments to oxygen and nutrient cycling in a temperate estuary. Marine Ecol. Progr. Ser. 86: 51–61.

    Google Scholar 

  • Rowan K (1989) Photosynthetic Pigments of the Algae. Cambridge Univ. Press, N.Y., 334 p.

    Google Scholar 

  • Rudek J, Paerl HW, Mallin MA & Bates PW (1991). Seasonal and hydrological control of phytoplankton nutrient limitation in the lower Neuse River Estuary, North Carolina. Marine Ecol. Progr. Ser. 75: 133–142.

    Article  Google Scholar 

  • Santschi PH (1995) Seasonality of nutrient concentrations in Galveston Bay. Marine Environ. Res. 40: 337–362.

    Article  CAS  Google Scholar 

  • Scala DJ & Kerkhof LJ (1998) Nitrous oxide reductase (nosZ) genespecific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments. FEMS Microbiol. Lett. 162: 61–68.

    Article  PubMed  CAS  Google Scholar 

  • Scala DJ & Kerkhof LJ (1999) Diversity of nitrous oxide reductase (nosZ) genes in continental shelf sediments. Appl. Environ. Microbiol. 65: 1681–1687.

    PubMed  CAS  Google Scholar 

  • Sellner KG (1997) Physiology, ecology, and toxic properties of marine cyanobacterial blooms. Limnol. Oceanogr. 42: 1089–1104.

    Article  Google Scholar 

  • Sheridan PF, Slack RD, Ray SM, McKinney LW, Klima EF & Calnan TR (1988) Biological components of Galveston Bay. In: Whitledge TE & Ray SM (Eds) Galveston Bay: Issues, Resources, Status and Management (pp 23-51). U.S. Department of Commerce.

  • Simek K et al. (1995) Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: A study at the species and community level. Limnol. Oceanogr. 40: 1077–1090.

    Article  Google Scholar 

  • Sivonen KK, Kononen K, Esala A-L & Niemela SI (1989) Toxicity and isolation of the cyanobacterium Nodularia spumigena from the southern Baltic Sea in 1986. Hydrobiologia 185: 3–8.

    Article  CAS  Google Scholar 

  • Steppe TF, Olson JB, Paerl HW & Belnap J (1996) Consortial N2fixation: A strategy for meeting nitrogen requirements of marine and terrestrial cyanobacterial mats. FEMS Microbiol. Ecol. 21: 149–156.

    Article  CAS  Google Scholar 

  • Stolte W, McCollin T, Noodeloos A & Riegman R (1994) Effect of nitrogen source on the size distribution within marine phytoplankton populations. J. Exp. Marine Biol. Ecol. 184: 83–97.

    Article  CAS  Google Scholar 

  • Suzuki MT, Rappe MS, Haimberger ZW, Winfield H, Adair N, Strobel J & Giovannoni SJ (1997) Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl. Environ. Microbiol. 63: 983–989.

    PubMed  CAS  Google Scholar 

  • Suzuki MT, Taylor LT & DeLong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays. Appl. Environ. Microbiol. 66(11): 4605–4614.

    Article  PubMed  CAS  Google Scholar 

  • Syrett P (1981) Nitrogen metabolism in microalgae. Physiological bases of phytoplankton ecology. Can. Bull. Fish. aquat. Sci. 210: 182–210. bTwilley R, Cowan J, Miller-Way T, Montagna P & Mortazavi B (1999) Benthic nutrient fluxes in selected estuaries in the Gulf of Mexico. In: Bianchi TS, Pennock JR & Twilley R (Eds) Biogeochemistry of Gulf of Mexico Estuaries (pp 163-209). John Wiley & Sons.

    Google Scholar 

  • Twomey L & Thompson P (2001) Nutrient limitation of phytoplankton in a seasonally open bar-built estuary: Wilson Inlet, Western Australia. J. Phycol. 37: 16–29.

    Article  CAS  Google Scholar 

  • Valigura RA, Alexander RB, Castro MS, Meyers TP, Paerl HW, Stacey PE & Turner RE (Eds) (2000) Nitrogen Loading in Coastal Water Bodies: An Atmospheric Perspective. Coastal and Estuarine Studies No. 57. American Geophysical Union Press, Washington, DC.

    Google Scholar 

  • Van Heukelem L, Lewitus A, Kana T & Craft N (1994). Improved separations of phytoplankton pigments using temperaturecontrolled high performance liquid chromatography. Marine Ecol. Progr. Ser. 114: 303–313.

    CAS  Google Scholar 

  • Vetriani C, Reysenbach A-L & Doré J (1998) Recovery and phylogenetic analysis of archaeal rRNA sequences from continental shelf sediments. FEMS Microbiol. Lett. 161: 83–88.

    Article  PubMed  CAS  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenko J & Mellilo JM (1997) Human domination of Earth's ecosystem. Science 277: 494–499.

    Article  CAS  Google Scholar 

  • Vollenweider RA (1982) Eutrophication of Waters: Monitoring, Assessment and Control. OECD, Paris.

    Google Scholar 

  • Voytek MA & Ward BB (1995) Detection of ammonium-oxidizing bacteria in the beta subclass of the class Proteobacteria in aquatic samples with the PCR. Appl. Environ. Microbiol. 61: 1444–1450.

    PubMed  CAS  Google Scholar 

  • Wagner M, Roger AJ, Flax JL, Brusseau GA & Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180: 2975–2982.

    PubMed  CAS  Google Scholar 

  • Warnken KL (1998) Sediment Water Exchange of Trace Metals and Nutrients in Galveston Bay, Texas. Masters Thesis, Texas A&M University.

  • Wagner M, Roger AJ, Flax JL, Brusseau GA & Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 80: 2975–2982.

    Google Scholar 

  • Weisse T (1993) Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. In: Jones JG (Ed) Advances in Microbial Ecology (pp 327–370). Plenum Press, New York.

    Google Scholar 

  • Whitall DR & Paerl HW (2001) Spatiotemporal variability of wet atmospheric nitrogen deposition to the Neuse River Estuary, NC. J. Environ. Qual. 30: 1508–1515.

    Article  PubMed  CAS  Google Scholar 

  • Wright S, Jeffrey S, Mantoura R, Llewellyn C, Bjørnland T, Repeta D & Welschmeyer N (1991) An improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Marine Ecol. Prog. Ser. 77: 183–196.

    CAS  Google Scholar 

  • Wyman M, Zehr JP & Capone DG (1996) Temporal variability in nitrogenase gene expression in natural populations of the marine cyanobacterium Trichodesmium thiebautii. Appl. Environ. Microbiol. 62: 1073–1075.

    PubMed  CAS  Google Scholar 

  • Zehr JP & Paerl HW (1998) Nitrogen fixation in the marine environment: Genetic potential and nitrogenase expression. In: Cooksey KE (Ed) Molecular Approaches to the Study of the Ocean (pp 285–302). Chapman and Hall, London.

    Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification [Review]. Microbiol. Mol. Biol. Rev. 61: 533–616.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans W. Paerl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paerl, H.W., Dyble, J., Twomey, L. et al. Characterizing man-made and natural modifications of microbial diversity and activity in coastal ecosystems. Antonie Van Leeuwenhoek 81, 487–507 (2002). https://doi.org/10.1023/A:1020561422706

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020561422706

Navigation