Skip to main content
Log in

The Future of Cancer Imaging

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Conventional (anatomical, structural) imaging is insensitive to the presence of cancer, often failing to yield the very information needed for accurate diagnosis and staging, for proper treatment selection and monitoring or for effective follow-up after treatment. This, fortunately, is changing. Newer techniques, already in clinical testing, are rapidly pushing clinical imaging in the same direction as the rest of medicine: away from simple detection of the gross structural end-effects of disease, and toward a patient-specific approach based on physiologic, histologic, antigenic, molecular, and (ultimately) genetic markers of disease. By 2010, unimodal, nonspecific, and insensitive radiological images may look as primitive to us as the first Roentgen radiographs. In some cases, these new scans will be so seamlessly integrated into therapeutic treatment that they may not even be thought of as imaging per se. This chapter looks forward to see how imaging for oncology may look in the coming decade, focusing upon near-term trends and techniques by selecting those already demonstrated in vivo in at least animals or which are now under human study, and thus which have moved far enough that they have already begun to impact patient care, or are likely to begin do so in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Proceedings of The Third Visible Human Project Conference, National Institutes of Health, RA Banvard, editor, 5-6 October 2000, National Library of Medicine. See also www.nlm.nih.gov/research/visible

  2. For the MRI atlas, the subject was a convicted felon, imaged, with his consent, shortly after lethal injection.

  3. Abbas F, Kaplan M, Soloway MS: Induction androgen deprivation therapy before radical prostatectomy for prostate cancer - initial results. Br J Urol 77(3): 423–428, 1996

    Google Scholar 

  4. Beck NE, Bradburn MJ, Vincenti AC, Rainsbury RM: Detection of residual disease following breast-conserving surgery. Br J Surg 85: 1273–1276, 1998

    Google Scholar 

  5. Eastham JA, Kattan MW, Rogers E, Goad JR, Ohori M, Boone TB, Scardino PT: Risk factors for urinary incontinence after radical prostatectomy. J Urol 156(5): 1707–1713, 1996

    Google Scholar 

  6. Fesseha T, Sakr W, Banerjee M, Wood DP, Pontes JE: Prognostic implications of a positive apical margin in radical prostatectomy specimens. J Urol 158: 2176–2179, 1997

    Google Scholar 

  7. Marshall E: Human genome: rival genome sequencers celebrate a milestone together. Science 288: 2294–2295, 2000

    Google Scholar 

  8. Pennnisi E: Human genome: finally, the book of life and instructions for navigating it. Science 288: 2304–2307, 2000

    Google Scholar 

  9. Edinger M, Sweeney TJ, Tucker AA, Olomu AB, Negrin RS, Contag CH: Noninvasive assessment of tumor cell proliferation in animal models. Neoplasia 1(4): 303–310, 1999

    Google Scholar 

  10. Termanini B, Gibril F, Reynolds JC, Doppman JL, Chen CC, Stewart CA, Sutliff VE, Jensen RT: Value of somatostatin receptor scintigraphy: a prospective study in gastrinoma of its effect on clinical management. Gastroenterology 112(2): 335–347, 1997

    Google Scholar 

  11. Allen MW, Hendi P, Schwimmer J, Bassett L, Gambhir SS: Decision analysis for the cost effectiveness of sestamibi scintimammography in minimizing unnecessary biopsies. Q J Null Med 44(2): 168–185, 2000

    Google Scholar 

  12. Krag D: Why perform randomized clinical trials for sentinel node surgery for breast cancer? Am J Surg 182(4): 411–413, 2001

    Google Scholar 

  13. Kurhanewicz J, Swanson MG, Wood PJ, Vigneron DB: Magnetic resonance imaging and spectroscopic imaging: Improved patient selection and potential for metabolic intermediate endpoints in prostate cancer chemoprevention trials. Urology 57(4 Suppl 1): 124–128, 2001

    Google Scholar 

  14. Kallen K, Burtscher IM, Holtas S, Ryding E, Rosen I: 201Thallium SPECT and 1H-MRS compared with MRI in chemotherapy monitoring of high-grade malignant astrocytomas. J Neuro-Oncol 46(2): 173–185, 2000

    Google Scholar 

  15. Kallen K, Geijer B, Malmstrom P, Andersson AM, Holtas S, Ryding E, Rosen I: Quantitative 201Tl SPET imaging in the follow-up of treatment for brain tumour: a sensitive tool for the early identification of response to chemotherapy? Nucl Med Commun 21(3): 259–267, 2000

    Google Scholar 

  16. Bokemeyer C, Kollmannsberger C, Oechsle K, Dohmen BM, Pfannenberg A, Claussen CD, Bares R, Kanz L: Early prediction of treatment response to highdose salvage chemotherapy in patients with relapsed germ cell cancer using [(18)F]FDG PET. Br J Cancer 86(4): 506–511, 2002

    Google Scholar 

  17. Zhao M, Beauregard DA, Loizou L, Davletov B, Brindle KM: Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 7(11): 1241–1244, 2001

    Google Scholar 

  18. Hofstra L, Dumont EA, Thimister PW, Heidendal GA, DeBruine AP, Elenbaas TW, Boersma HH, van Heerde WL, Reutelingsperger CP: in vivo detection of apoptosis in an intracardiac tumor. JAMA 285(14): 1841–1842, 2001

    Google Scholar 

  19. Griffiths JR, Glickson JD: Monitoring pharmacokinetics of anticancer drugs: non-invasive investigation using magnetic resonance spectroscopy. Adv Drug Deliv Rev 41(1): 75–89, 2000

    Google Scholar 

  20. Chen DM, Hawkins BL, Glickson JD: Proton nuclear magnetic resonances study of bleomycin in aqueous solution. Assignment of resonances. Biochemistry 16(12): 2731–2738, 1977

    Google Scholar 

  21. Bigio IJ, Mourant JR, Los G: Noninvasive, in-situ measurement of drug concentrations in tissue using optical spectroscopy. J Gravit Physiol 6(1): 173–175, 1999

    Google Scholar 

  22. Mourant JR, Johnson TM, Los G, Bigio IJ: Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurements. Phys Med Biol 44(5): 1397–1417, 1999

    Google Scholar 

  23. Front D, Israel O, Iosilevsky G, Even-Sapir E, Frenkel A, Kolodny GM, Feinsod M: SPECT quantitation of cobalt-57 bleomycin delivery to human brain tumors. J Nucl Med 29(2): 187–194, 1988

    Google Scholar 

  24. Feig SA: Current status of screening mammography. Obstet Gynecol Clin North Am 29(1): 123–136, 2002

    Google Scholar 

  25. Kerlikowske K, Salzmann P, Phillips KA, Cauley JA, Cummings SR: Continuing screening mammography in women aged 70-79 years: impact on life expectancy and cost-effectiveness. JAMA 282(22): 2156–2163, 1999

    Google Scholar 

  26. Rosenquist CJ, Lindfors KK: Screening mammography beginning at age 40 years: a reappraisal of cost-effectiveness. Cancer 82(11): 2235–2240, 1998

    Google Scholar 

  27. Budinger TF, Benaron DA, Koretsky AP: Imaging transgenic animals. Annu Rev Biomed Eng 1: 611–648, 1999

    Google Scholar 

  28. ImTek, Inc MicroCT, cited in: Paulus MJ, Gleason SS, Kennel SJ, Hunsicker PR, Johnson DK: High resolution X-ray computed tomography: an emerging tool for small animal cancer research. Neoplasia 2(1-2): 62–70, 2000 (Review)

    Google Scholar 

  29. ScanCo System, cited in: Muller R, Van Campenhout H, Van Damme B, Van Der Perre G, Dequeker J, Hildebrand T, Ruegsegger P: Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 23(1): 59–66, 1998

    Google Scholar 

  30. Chatziioannou AF, Cherry SR, Shao Y, Silverman RW, Meadors K, Farquhar TH, Pedarsani M, Phelps ME: Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med. 40(7): 1164–1175, 1999

    Google Scholar 

  31. Tai C, Chatziioannou A, Siegel S, Young J, Newport D, Goble RN, Nutt RE, Cherry SR: Performance evaluation of the microPET P4: a PET system dedicated to animal imaging. Phys Med Biol 46(7): 1845–1862, 2001

    Google Scholar 

  32. IVIS System, Xenogen Corporation, Alameda, California

  33. AntiCancer, San Diego, California

  34. Coffey D: Special Lecture. Presented at the CaP CURE 7th Annual Scientific retreat, Lake Tahoe, NV, September 21-24, 2000

  35. Getzenberg RH, Pienta KJ, Huang EYW, Coffey DS: Identification of Nuclear Matrix Proteins in the Cancer and Normal Rat Prostate. Cancer Res. 51: 6514–6520, 1991

    Google Scholar 

  36. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Pulafito CA, Fujimoto JG: Optical coherence tomography. Science 254: 1178–1181, 1991

    Google Scholar 

  37. Initially sextant biopsy, but now often decant, or dodecant, or higher sample numbers in order to improve the statistical reliability of a negative result; the reliability of an unequivocal positive result is generally not in question

  38. Keech DW, Catalona WJ, Smith DS: Serial prostatic biopsies in men with persistently elevated serum prostate specific antigen values. J Urol 151: 1571–1574, 1994

    Google Scholar 

  39. Ellis WJ, Brawer MK: Repeat prostate needle biopsy. Who Needs it? J Urol 153: 1496–1498, 1995

    Google Scholar 

  40. Roehrborn CG, Pickens GJ, Snaders JS: Diagnostic yield of repeated transrectal ultrasound-guided biopsies stratified by specific histopathologic diagnoses and prostate-specific antigen levels. Urology 47: 347–352, 1996

    Google Scholar 

  41. Hammerer P, Huland H: Systematic sextant biopsies in 651 patients referred for prostate evaluation. J Urol 151(1): 99–102, 1994

    Google Scholar 

  42. Terris MK, Freiha FS, McNeal JE et al.: Efficacy of transrectal ultrasound for identification of clinically undetected prostate cancer. J Urol 146: 78–83, 1991

    Google Scholar 

  43. Reynolds JS, Troy TL, Mayer RH, Thompson AB, Waters DJ, Cornell KK, Snyder PW, Sevick-Muraca EM: Imaging of spontaneous canine mammary tumors using fluorescent contrast agents. Photochem Photobiol 70(1): 87–94, 1999

    Google Scholar 

  44. Gurfinkel M, Thompson AB, Ralston W, Troy TL, Moore AL, Moore TA, Gust JD, Tatman D, Reynolds JS, Muggenburg B, Nikula K, Pandey R, Mayer RH, Hawrysz DJ, Sevick-Muraca EM: Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study. Photochem Photobiol 72(1): 94–102, 2000

    Google Scholar 

  45. Alex JC, Krag DN: Gamma-probe guided localization of lymph nodes. Surg Oncol 2(3): 137–143, 1993

    Google Scholar 

  46. Alex JC, Weaver DL, Fairbank JT, Rankin BS, Krag DN: Gamma-probe-guided lymph node localization in malignant melanoma. Surg Oncol 2(5): 303–308, 1993

    Google Scholar 

  47. Krag DN, Weaver DL, Alex JC, Fairbank JT: Surgical resection and radiolocalization of the sentinel lymph node in breast cancer using a gamma probe. Surg Oncol 2(6): 335–339, 1993 (with discussion, p 340)

    Google Scholar 

  48. Glass LF, Messina JL, Cruse W, Wells K, Rapaport D, Miliotes G, Berman C, Reintgen D, Fenske NA: The use of intraoperative radiolymphoscintigraphy for sentinel node biopsy in patients with malignant melanoma. Dermatol Surg 22(8): 715–720, 1996

    Google Scholar 

  49. The compound 99mTc-methoxyisobutyl isonitrile, Cardiolite, Du Pont Pharmaceuticals, Wilmington, DE

  50. Muller ST, Guth-Tougelides B, Crutzig H: imaging of malignant tumors with MIBI-99mTc Spect. J Nucl Med 28: 562P, 1987 (Abstract)

    Google Scholar 

  51. Chiu ML, Kronauge JF, Piwnica-Worms D: Effect of mitochondrial and plasma membrane potentials on accumulation of hexakis (2-methoxyisobutylisonitrile) technetium(I) in cultured mouse fibroblasts. J Nucl Med 31(10): 1646–1653, 1990

    Google Scholar 

  52. Becker A, Hessenius C, Licha K, Ebert B, Sukowski U, Semmler W, Wiedenmann B, Grotzinger C: Receptortargeted optical imaging of tumors with near-infrared fluorescent ligands. Nat Biotechnol 19(4): 327–331, 2001

    Google Scholar 

  53. Becker A, Hessenius C, Bhargava S, Grotzinger C, Licha K, Schneider-Mergener J, Wiedenmann B, Semmler W: Cyanine dye labeled vasoactive intestinal peptide and somatostatin analog for optical detection of gastroenteropancreatic tumors. Ann NY Acad Sci 921: 275–278, 2000

    Google Scholar 

  54. Fair WR, Israeli RS, Heston DW: Prostate specfic membrane antigen. Prostate 32: 140–148, 1997

    Google Scholar 

  55. Petronis JD, Regan F, Lin K: Indium-111 Capromab pendetide imaging to detect recurrent and metastatic prostate cancer. Clin Nucl Med 23(10): 672–677, 1998

    Google Scholar 

  56. Jain RK: Physiological barriers to delivery of monocolonal antibodies and other macromolecules in tumors. Cancer Res 50(Suppl): 814s–819s, 1990

    Google Scholar 

  57. Delaloye AB, Delaloye B: Tumor imaging with monoclonal antibodies. Sem Nucl Med 2: 144–164, 1995

    Google Scholar 

  58. Paganelli G, De Cicco C, Cremonesi M et al.: Optimized sentinel node scintigraphy in breast cancer. Quart J Nucl Med 42: 49–53, 1998

    Google Scholar 

  59. Bombardieri E, Crippa F, Maffioli L: Nuclear medicine approaches for detection of axillary lymph node metastases. Quart J Nucl Med 42: 54–65, 1998

    Google Scholar 

  60. Moffat FL, Pinsky CM, Hammershaimb L, Petrelli NJ, Patt YZ, Whaley FS, Goldenberg DM: The Immunomedics Study Group. Clinical utility of external immunoscintigraphy with the IMMU-4 technetium-99m-Fab' antibody fragment in patients undergoing surgery for carcinoma of the colon and rectum. Results of a pivotal, Phase III trial. J Clin Oncol 14: 2295–2305, 1996

    Google Scholar 

  61. Lucci A, Turner RR, Morton DL: Carbon dye as an adjunct to isosulfan blue dye for sentinel lymph node dissection. Surgery 126(1): 48–53, 1999

    Google Scholar 

  62. Morton DL, Wen DR, Wong JH, Economon JS, Cagle LA, Sotrm FK: Technical details of interoperative lymphatic mapping for early stage melanoma. Arch Surg 127: 392–399, 1992

    Google Scholar 

  63. Edreira MM, Colobo LL, Perez JH, Sajaroff EO, Castiglia SG: in vivo evaluation of three different 99mTc-labelled radiopharmaceuticals for sentinel lymph node identification. Nuc Med Commun 22(5): 499–504, 2001

    Google Scholar 

  64. Phillips WT, Klipper R, Goins B: Use of 99mTc-labeled liposomes encapsulating blue dye for identification of the sentinel lymph node. J Nuc Med 42(3): 446–451, 2001

    Google Scholar 

  65. Benaron DA, Scardino PT, Bander NR, Talmi YT: Optical dyes for real-time trace cancer imaging. Presented at 7th Annual CaP CURE scientific retreat, 21-24, August 2000, Lake Tahoe, NV

  66. Torchia MG, Nason R, Danzinger R, Lewis JM, Thliveris JA: Interstitial MR lymphangiography for the detection of sentinel lymph nodes. J Surg Oncol 78(3): 151–156, 2001

    Google Scholar 

  67. Benaron DA, Scardino PT, Talmi YT, Bander NR: Targeted optical dyes for real-time trace cancer imaging. Presented at 8th Annual CaP CURE scientific retreat, 6-9, August 2001, Lake Tahoe, NV

  68. Giulano AE, Jones RC, Brennan M, Statman R: Sentinel lymphadenectomy in breast cancer. J Clin Oncol 15: 2345–2350, 1997

    Google Scholar 

  69. Krag D, Weaver D, Ashikaga T, Moffat F, Klimberg VS, Shriver C, Feldman S, Kusminsky R, Gadd M, Kuhn J, Harlow S, Beitsch P: The sentinel node in breast cancer - a multicenter validation study N Engl J Med 339(14): 941–946, 1998

    Google Scholar 

  70. Krag DN, Meijer DL, Weaver DL et al.: Minimal access surgery for staging of malignant melanoma. Arch Surg 130: 654–660, 1995

    Google Scholar 

  71. Miltenburg DM, Miller C, Karamlou TB, Brunicardi FC: Meta-analysis of sentinel lymph node biopsy in breast cancer. J Surg Res 84(2): 138–142, 1999

    Google Scholar 

  72. Lechner P, Lind P, Snyder M, Haushofer H: Probe-guided surgery for colorectal cancer. Recent Res Cancer Res 157: 273–280, 2000

    Google Scholar 

  73. Vera DR, Wallace AM, Hoh CK, Mattrey RF: A synthetic macromolecule for sentinel node detection: of 99mTc-DTPA-Mannosyl-Dextran. J Nucl Med 42(6): 951–959, 2001

    Google Scholar 

  74. We are investigating use of an optical reporter dye, solubilized in lymphatic fluids using PEG, as well as targeted using cytokeratin for breast, or muc-1 for melanoma

  75. Young CYF, Montogomery BT, Andrews PE, Qui SD, Bilhartz DL, Tindall DJ: Hormonal regulation of prostate-specific antigen messenger RNA in human prostatic adenocarcinoma cell line LNCaP. Cancer Res 51: 3748–3752, 1991

    Google Scholar 

  76. Guller U, Nitzsche EU, Schirp U, Viehl CT, Torhorst J, Moch H, Langer I, Marti WR, Oertli D, Harder F, Zuber M: Selective axillary surgery in breast cancer patients based on positron emission tomography with 18F-fluoro-2-deoxy-D-glucose: not yet! Breast Cancer Res Treat 71(2): 171-173, 2002

    Google Scholar 

  77. Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hanicke W, Sauter R, Hamburger C: Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology 172(2): 541–548, 1989

    Google Scholar 

  78. Glickson JD: Clinical NMR spectroscopy of tumors. Current status and future directions. Invest Radiol 24(12): 1011–1006, 1989

    Google Scholar 

  79. Langkowski JH, Wieland J, Bomsdorf H, Leibfritz D, Westphal M, Offermann W, Maas R: Pre-operative localized in vivo proton spectroscopy in cerebral tumors at 4.0 Tesla - first results. Magn Reson Imaging 7(5): 547–555, 1989

    Google Scholar 

  80. Demaerel P, Johannik K, Van Hecke P, Van Ongeval C, Verellen S, Marchal G, Wilms G, Plets C, Goffin J, Van Calenbergh F et al.: Localized 1H NMR spectroscopy in fifty cases of newly diagnosed intracranial tumors. J Comput Assist Tomogr 15(1): 67–76, 1991

    Google Scholar 

  81. Kugel H, Heindel W, Ernestus RI, Bunke J, du Mesnil R, Friedmann G: Human brain tumors: spectral patterns detected with localized H-1 MR spectroscopy. Radiology 183(3): 701–709, 1992

    Google Scholar 

  82. Vigneron D, Bollen A, McDermott M, Wald L, Day M, Moyher-Noworolski S, Henry R, Chang S, Berger M, Dillon W, Nelson S: Three-dimensional magnetic resonance spectroscopic imaging of histologically confirmed brain tumors. Magn Reson Imaging 19(1): 89–101, 2001

    Google Scholar 

  83. Kurhanewicz J, Swanson MG, Wood PJ, Vigneron DB: Magnetic resonance imaging and spectroscopic imaging: Improved patient selection and potential for metabolic intermediate endpoints in prostate cancer chemoprevention trials. Urology 57(4 Suppl 1): 124–128, 2001

    Google Scholar 

  84. Wagenaar DJ, Weissleder R, Henegerer A. Glossary of molecular imaging technology. Acad Radiol 8: 409–420, 2001

    Google Scholar 

  85. Weissleder R, Mahmood U: Molecular imaging. Radiology 219(2): 316–333, 2001

    Google Scholar 

  86. Phelps ME: Inaugural article: positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA. 97(16): 9226–9233, 2000

    Google Scholar 

  87. Phelps ME: PET: the merging of biology and imaging into molecular imaging. J Nucl Med 41(4): 661–681, 2000

    Google Scholar 

  88. Bugaj JE, Achilefu S, Dorshow RB, Rajagopalan R: Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform. J Biomed Opt 6(2): 122–133, 2001

    Google Scholar 

  89. Mahmood U, Tung CH, Bogdanov A Jr, Weissleder R: Near-infrared optical imaging of protease activity for tumor detection. Radiology 213(3): 866–870, 1999

    Google Scholar 

  90. Jacobs RE, Ahrens ET, Meade TJ, Fraser SE: Looking deeper into vertebrate development. Trends Cell Biol 9(2): 73–76, 1999

    Google Scholar 

  91. Marten K, Bremer C, Khazaie K, Sameni M, Sloane B, Tung CH, Weissleder R: Detection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in mice. Gastroenterology 122(2): 406–414, 2002

    Google Scholar 

  92. Tung CH, Bredow S, Mahmood U, Weissleder R: Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging. Bioconjug Chem 10(5): 892–896, 1999

    Google Scholar 

  93. Tung CH, Mahmood U, Bredow S, Weissleder R: in vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res 60(17): 4953–4958, 2000

    Google Scholar 

  94. Walter G, Barton ER, Sweeney HL: Noninvasive measurement of gene expression in skeletal muscle. Proc Natl Acad Sci USA 97: 5151–5155, 2000

    Google Scholar 

  95. Pozzilli P, Pozzilli C, Pantano P, Negri M, Andreani D, Cudworth AG: Tracking of indium-111-oxine labelled lymphocytes in autoimmune thyroid disease. Clin Endocrinol (Oxf) 19(1): 111–116, 1983

    Google Scholar 

  96. Melder RJ, Brownell AL, Shoup TM, Brownell GL, Jain RK: Imaging of activated natural killer cells in mice by positron emission tomography: preferential uptake in tumors. Cancer Res 53(24): 5867–5871, 1993

    Google Scholar 

  97. Melder RJ, Elmaleh D, Brownell AL, Brownell GL, Jain RK: A method for labeling cells for positron emission tomography (PET) studies. J Immunol Methods 175(1): 79–87, 1994

    Google Scholar 

  98. Schoepf U, Marecos EM, Melder RJ, Jain RK, Weissleder R: Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies. Biotechniques 24(4): 642–646, 648-651, 1998

    Google Scholar 

  99. Hardy J, Edinger M, Bachmann MH, Negrin RS, Fathman CG, Contag CH: Bioluminescence imaging of lymphocyte trafficking in vivo. Exp Hematol 29(12): 1353–1360, 2001

    Google Scholar 

  100. Koike C, Oku N, Watanabe M, Tsukada H, Kakiuchi T, Irimura T, Okada S: Real-time PET analysis of metastatic tumor cell trafficking in vivo and its relation to adhesion properties. Biochim Biophys Acta 1238(2): 99–106, 1995

    Google Scholar 

  101. Weissleder R, Cheng HC, Bogdanova A, Bogdanov A Jr: Magnetically labeled cells can be detected by MR imaging.J Magn Reson Imaging 7(1): 258–263, 1997

    Google Scholar 

  102. Kan Z, Liu TJ: Video microscopy of tumor metastasis: using the green fluorescent protein (GFP) gene as a cancer-cell-labeling system. Clin Exp Metastasis 17(1): 49–55, 1999

    Google Scholar 

  103. Yang M, Baranov E, Wang J-W, Jiang P, Wang X, Sun F-X, Bovet M, Moossa AR, Penman S, Hoffman RM: Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastatsis on internal organs in the fluorescent orthotopic model. Proc Natl Acad Sci USA 99: 3824–3829, 2002

    Google Scholar 

  104. Perrottii M, Han KR, Epstein RE et al.: Efficacy of endorectal magnetic resonance imaging to detect tumor foci in men with prior negative prostatic biopsy: a pilot study. J Urol 162: 1314–1317, 1999

    Google Scholar 

  105. Torricelli P, De Santis M, Pollastri CA: Magnetic resonance with endorectal coil in the local staging of prostatic carcinoma: comparison with histologic macrosections in 40 cases. Radiol Med (Torino) 97: 491–498, 1999

    Google Scholar 

  106. Perrotti M, Han KR, Epstein RE, Kennedy EC, Rabbani F, Badani K, Pantuck AJ, Weiss RE, Cummings KB: Prospective evaluation of endorectal magnetic resonance imaging to detect tumor foci in men with prior negative prostastic biopsy: a pilot study. J Urol 162(4): 1314–1317, 1999

    Google Scholar 

  107. Torricelli P, Lo Russo S, Pecchi A, Luppi G, Cesinaro AM, Romagnoli R: Endorectal coil MRI in local staging of rectal cancer. Radiol Med (Torino) 103(1-2): 74–83, 2002

    Google Scholar 

  108. Other atomic species can be used to produce a signal, notably Cl-Chlorine. However, the majority of machines deployed are configured for proton (1H) spectra, and the detection of other substances using proton spectroscopy often entails nothing more than software changes. Thus, most of the improvements now heading toward clinical use tend to be based on hydrogen. There is a large body of literature on cellular energetics using phosphorus resonance, with a suggestion of clinical utility from the analysis of high energy stores such as phosphocreatine, ATP, ADP, AMP, adenosine, and the like

  109. Scheidler J, Hricak H, Vigneron DB, Yu KK, Sokolov DL, Huang RL, Zaloudek CJ, Nelson SJ, Carroll PR, Kurhanewicz J: 3D 1H-MR spectroscopic imaging in localizing prostate cancer: clinico-pathologic study. Radiology 213: 473–480, 1999

    Google Scholar 

  110. Kurhanewicz J, Vigneron DB, Hricak H, Narayan P, Carroll P, Nelson SJ: Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24-0.7 cm3) spatial resolution. Radiology 198: 795–805, 1996

    Google Scholar 

  111. Vigneron D, Bollen A, McDermott M, Wald L, Day M, Moyher-Norworolski S, Henry R, Chang S, Berger M, Dillon W, Nelson S: Three-dimensional magnetic resonance spectroscopic imaging of histologically confirmed brain tumors. Magn reson imaging 19: 89–101, 2001

    Google Scholar 

  112. Menard C, Smith IC, Somorjai RL, Leboldus L, Patel R, Littman C, Robertson SJ, Bezabeh T: Magnetic resonance spectroscopy of the malignant prostate gland after radiotherapy: a histopathologic study of diagnostic validity. Int J Radiat Oncol Biol Phys 50(2): 317–323, 2001

    Google Scholar 

  113. Hahn P, Smith IC, Leboldus L, Littman C, Somorjai RL, Bezabeh T: The classification of benign and malignant human prostate tissue by multivariate analysis of 1H magnetic resonance spectra. Cancer Res 57(16): 3398–3401, 1997

    Google Scholar 

  114. Arnold DL, Shoubridge EA, Villemure JG, Feindel W: Proton and phosphorus magnetic resonance spectroscopy of human astrocytomas in vivo. Preliminary observations on tumor grading. NMR Biomed 3(4): 184–189, 1990

    Google Scholar 

  115. Rutter A, Hugenholtz H, Saunders JK, Smith IC: Classification of brain tumors by ex vivo 1H NMR spectroscopy. J Neurochem 64(4): 1655–1661, 1995

    Google Scholar 

  116. Merchant TE, Kasimos JN, Vroom T, de Bree E, Iwata JL, de Graaf PW, Glonek T: Malignant breast tumor phospholipid profiles using (31)P magnetic resonance. Cancer Lett 176(2): 159–167, 2002

    Google Scholar 

  117. Gohagan JK, Spitznagel EL, Murphy WA, Vannier MW, Dixon WT, Gersell DJ, Rossnick SL, Totty WG, Destouet JM, Rickman DL et al.: Multispectral analysis of MRimages of the breast. Radiology 163(3): 703–707, 1987

    Google Scholar 

  118. Swanson MG, Vigneron DB, Tran T-K, Sailasuta N, Hurd RE, Kurhanewicz J: Single-voxel oversampled J-resolved spectroscopy of in vivo human prostate tissue. Mag Reson Med 45: 973–980, 2001

    Google Scholar 

  119. Costello LC, Franklin RB: The intermediary metabolism of the prostate: a key to understanding the pathogenesis and progression of prostate malignancy. Oncology 59(4): 269–282, 2000

    Google Scholar 

  120. Costello LC, Franklin RB, Narayan P: Citrate in the diagnosis of prostate cancer. Prostate 38(3): 237–245, 1999

    Google Scholar 

  121. The word signal, rather than concentration, is used, as the resonance signal is a convolution of many effects, including concentration and environmental factors.

  122. Simmons ML, Frondoza CG, Coyle JT: Immunochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 45: 37–45, 1991

    Google Scholar 

  123. Janus TJ, Kim EE, Tilbury R, Bruner JM, Yung WK: Use of [18F]fluorodeoxyglucose positron emission tomography in patients with primary malignant brain tumors. Ann Neurol 33(5): 540–548, 1993

    Google Scholar 

  124. Aronen HJ, Gazit E, Louis DN, Buchbinder BR, Pardo FS, Weisskoff RM, Harsh GR, Cosgrove CR, Halpern EF, Hochberg FH, Rosen BR: Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191: 41–51, 1994

    Google Scholar 

  125. Kurhanewicz J, Vigneron DB, Males RG, Swanson MG, Yu KK, Hricak H: The prostate: MR imaging and spectroscopy. Present and future. Radiol Clin North Am 38(1): 115–138, viii-ix, 2000

    Google Scholar 

  126. DiBiasi SJ, Hosseinzadeh K, Gullapalli RP, Jacobs SC, Naslund MJ, Sklar GN, Alexander RB, Yu C: Magnetic reasonance spectroscopic imaging-guided brachytherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 52(2): 429–438, 2002

    Google Scholar 

  127. Smith BR, Johnson GA, Groman EV, Linney E: magnetic resonance microscopy of mouse embryos. Proc Nat Acad Sci USA 91: 3530–3533, 1994

    Google Scholar 

  128. Bremer C, Weissleder R: Molecular Imaging: in vivo imaging of gene expression: MR and optical technologies. Acad Radiol 8: 15–23, 2001

    Google Scholar 

  129. Enochs WS, Hyslop WB, Bennett HF, Brown RDd, Koenig SH, Swartz HM: Sources of the increased longitudinal relaxation rates observed in melanotic melanoma: an in vitro study of synthetic melanins. Invest Radiol 24: 794–804, 1989

    Google Scholar 

  130. Okazzaki M, Kuwata K, Miki Y, Shiga S, Shiga T: Electron spin relaxation of synthetic melanin and melanin-containing human tissues as studied by electron spin echo and electron spin resonance. Arch Biochem Biphys 242: 197-205, 1985

    Google Scholar 

  131. Isiklar I, Leeds NE, Fuller GN, Kumar AJ: Intracranial metastatic melanoma: correlation between MR imaging characteristics and melanin content. AJR Am J Roentgenol 165: 1503–1512, 1995

    Google Scholar 

  132. Louie AY, Huber MM, Ahrens ET et al.: In vivo visulalization of gene expression using magnetic resonance imaging. Nat Biotechnol 18: 321–325, 2000

    Google Scholar 

  133. Weissleder R, Bogdanov A Jr, Tung CH, Weinmann HJ: Size optimization of synthetic graft copolymers for in vivo angiogenesis imaging. Bioconjug Chem 12(2): 213–219, 2001

    Google Scholar 

  134. Weissleder R, Simonova M, Bogdanova A, Bredow S, Enochs WS, Bogdanov A Jr: MR Imaging and scintigraphy of gene expression through melanin induction. Radiology 204: 425–429, 1997

    Google Scholar 

  135. Kayyem JF, Kumar RM, Fraser SE, Meade TJ: Receptortargeted co-transport of DNA into eukaryotic cells. Methods Enzymol 217: 618–644, 1993

    Google Scholar 

  136. Koretsky A, Lin Y, Schorle H, Jaenisch R: Genetic control of MRI contrast by expression of the transferring receptor. Proceedings of the fourth meeting of the International Society for Magnetic Resonance in Medicine. International Society for Magnetic Resonance in Medicine, Berkeley, CA, 5471, 1996 (Abstract)

  137. Folpe AL, Lyles RH, Sprouse JT, Conrad EU 3rd, Eary JF: (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clin Cancer Res 6(4): 1279–1287, 2000

    Google Scholar 

  138. Kostakoglu L, Leonard JP, Kuji I, Coleman M, Vallabhajosula S, Goldsmith SJ: Comparison of fluorine-18 fluorodeoxyglucose positron emission tomography and Ga-67 scintigraphy in evaluation of lymphoma. Cancer 94(4): 879–888, 2002

    Google Scholar 

  139. Kernstine KH, Mclaughlin KA, Menda Y, Rossi NP, Kahn DJ, Bushnell DL, Graham MM, Brown CK, Madsen MT: Can FDG-PET reduce the need for mediastinoscopy in potentially resectable nonsmall cell lung cancer? Ann Thorac Surg 73(2): 394–401; discussion 401-402, 2002

    Google Scholar 

  140. Mijnhout GS, Hoekstra OS, van Tulder MW, Teule GJ, Deville WL: Systematic review of the diagnostic accuracy of (18)F-fluorodeoxyglucose positron emission tomography in melanoma patients. Cancer 91(8): 1530–1542, 2001

    Google Scholar 

  141. Kato H, Kuwano H, Nakajima M, Miyazaki T, Yoshikawa M, Ojima H, Tsukada K, Oriuchi N, Inoue T, Endo K: Comparison between positron emission tomography and computed tomography in the use of the assessment of esophageal carcinoma. Cancer 94(4): 921–928, 2002

    Google Scholar 

  142. Arulampalam TH, Costa DC, Bomanji JB, Ell PJ: The clinical application of positron emission tomography to colorectal cancer management. Q J Nucl Med 45(3): 215–230, 2001

    Google Scholar 

  143. Glasspool RM, Evans TRJ: Clinical imaging of cancer metastasis. Eur J Cancer 36: 1661–1670, 2000

    Google Scholar 

  144. Dwamena BA, Sonnad SS, Angobaldo JO, Wahl RL: Metastases from non-small cell lung cancer: mediastinal staging in the 1990s - meta-analytic comparison of PET and CT. Radiology 213: 530–536, 1999

    Google Scholar 

  145. Lewis P, Griffin S, Marsden P, Gee T, Nunan T, Maisey M: Whole-body F-18 fluorodeoxyglucose positron emission tomography in preoperative evaluation of lung cancer. Lancet 344: 1265–1266, 1994

    Google Scholar 

  146. Bury T, Dowlati A, Paulus P, Hustinx R, Radermecker M, Rigo P: Staging of non-small-cell lung cancer by whole-body fluorine-18 deoxyglucose positron emission tomography. Eur J Nucl Med 23: 204–206, 1996

    Google Scholar 

  147. Valk PE, Pounds TR, Hopkins DM, Haseman MK, Hofer GA, Greiss HB: Staging non-small cell lung cancer by whole-body positron emission tomography imaging. Ann Thorac Surg 60: 1573–1581, 1995

    Google Scholar 

  148. Macfarlane DJ, Sondak V, Johnson T, Wahl RL: Prospective evaluation of 2-[F-18]-2-deoxy-D-glucose positron emission tomography in staging of regional lymph nodes in patients with cutaneous malignant melanoma. J Clin Oncol 16: 1770–1776, 1998

    Google Scholar 

  149. Wagner JD, Schauwecker D, Hutchins G, Coleman JJ: Initial assessment of positron emission tomography for detection of nonpalpable regional lymphatic metastases in melanoma. J Surg Oncol 64: 181–189, 1997

    Google Scholar 

  150. Moog F, Bangerter M, Diederichs CG, Gulhman A, Kotzerke J, Merkle E, Kolokythas O, Frickhofen N, Reske SN: Lymphoma: role of whole-body 2-deoxy-2-[F-18]fluoro-D-glucose (FDG) PET in nodal staging. Radiology 203: 795–800, 1997

    Google Scholar 

  151. Blankenberg FG, Naumovski L, Tait JF, Post AM, Strauss HW: Imaging cyclophosphamide-induced intramedullary apoptosis in rats using 99mTc-radiolabeled annexin V. J Nucl Med 42(2): 309–316, 2001

    Google Scholar 

  152. Blankenberg FG, Katsikis PD, Tait JF, Davis RE, Naumovski L, Ohtsuki K, Kopiwoda S, Abrams MJ, Darkes M, Robbins RC, Maecker HT, Strauss HW: in vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc Natl Acad Sci USA 95(11): 6349–6354, 1998

    Google Scholar 

  153. Ray P, Bauer E, Iyer M, Barrio JR, Satyamurthy N, Phelps ME, Herschman HR, Gambhir SS: Monitoring gene therapy with reporter gene imaging. Semin Nucl Med 31(4): 312–320, 2001

    Google Scholar 

  154. Heppeler A, Froidevaux S, Eberle AN, Maecke HR: Receptor targeting for tumor localisation and therapy with radiopeptides. Curr Med Chem 7(9): 971–994, 2000

    Google Scholar 

  155. Alauddin MM, Shahinian A, Gordon EM, Bading JR, Conti PS: Preclinical evaluation of the penciclovir analog 9-(4-[(18)F]fluoro-3-hydroxymethylbutyl)guanine for in vivo measurement of suicide gene expression with PET. J Nucl Med 42(11): 1682–1690, 2001

    Google Scholar 

  156. Berger F, Gambhir SS: Recent advances in imaging endogenous or transferred gene expression utilizing radionuclide technologies in living subjects: applications to breast cancer. Breast Cancer Res 3(1): 28–35, 2001

    Google Scholar 

  157. Liang Q, Satyamurthy N, Barrio JR, Toyokuni T, Phelps MP, Gambhir SS, Herschman HR: Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther 8(19): 1490–1498, 2001

    Google Scholar 

  158. Henze M, Schuhmacher J, Hipp P, Kowalski J, Becker DW, Doll J, Macke HR, Hofmann M, Debus J, Haberkorn U: PET imaging of somatostatin receptors. J Nucl Med 42(7): 1053–1056, 2001

    Google Scholar 

  159. Nakamoto Y, Saga T, Misaki T, Kobayashi H, Sato N, Ishimori T, Kosugi S, Sakahara H, Konishi J: Establishment and characterization of a breast cancer cell line expressing Na+/I-symporters for radioiodide concentrator gene therapy. J Nucl Med 41(11): 1898–1904, 2000

    Google Scholar 

  160. Scearce-Levie K, Coward P, Redfern CH, Conklin BR: Engineering receptors activated solely by synthetic ligands (RASSLs). Trends Pharmacol Sci 22(8): 414–420, 2001

    Google Scholar 

  161. Moore A, Basilion JP, Chiocca EA, Weissleder R: Measuring transferrin receptor gene expression by NMR imaging. Biochim Biophys Acta 1402(3): 239–249, 1998

    Google Scholar 

  162. Tjuvajev JG, Stockhammer G, Desai R, Uehara H, Watanabe K, Gansbacher B, Blasberg RG: Imaging the expression of transfected genes in vivo. Cancer Res 55(24): 6126–6132, 1995

    Google Scholar 

  163. Hustinx R, Shiue CY, Alavi A, McDonald D, Shiue GG, Zhuang H, Lanuti M, Lambright E, Karp JS, Eck SL: Imaging in vivo herpes simplex virus thymidine kinase gene transfer to tumour-bearing rodents using positron emission tomography. Eur J Nucl Med 28(1): 5–12, 2001

    Google Scholar 

  164. Gambhir SS, Herschman HR, Cherry SR, Barrio JR, Satyamurthy N, Toyokuni T, Phelps ME, Larson SM, Balatoni J, Finn R, Sadelain M, Tjuvajev J, Blasberg R: Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2(1-2): 118–138, 2000

    Google Scholar 

  165. Yaghoubi S, Barrio JR, Dahlbom M, Iyer M, Namavari M, Satyamurthy N, Goldman R, Herschman HR, Phelps ME, Gambhir SS: Human pharmacokinetic and dosimetry studies of 18F-FHBG: a reporter probe for imaging herpes simplex virus type-1 thymidine kinase reporter gene expression. J Nucl Med 42(8): 1225–1234, 2001

    Google Scholar 

  166. Doubrovin M, Ponomarev V, Beresten T, Balatoni J, Bornmann W, Finn R, Humm J, Larson S, Sadelain M, Blasberg R, Gelovani Tjuvajev J: Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc Natl Acad Sci USA 98(16): 9300–9305, 2001

    Google Scholar 

  167. Benaron DA, Stevenson DK: Optical time-of-flight and absorbance imaging of biologic media. Science 259(5100): 1463-1466, 1993

    Google Scholar 

  168. Light propagates through tissue much as a gas diffuses through air, in a random, scattered walk called photon diffusion. At wavelengths near the blue, the absorbance of tissue is high, such that photons travel a few hundred microns or less before being absorbed; in contrast in the red and infrared wavelengths, photons scatter but travel millimeters to centimeters before absorption, and this scattering dominates the transport of photons across tissue. Scattering of light redirects photons based upon local changes in index-of-refraction. These refraction changes come from objects with structures on the size order of the wavelength of light (typically nucleus and cell membranes, and to a lesser extent mitochondria). The physics of the imaging has been well studied, is complex, and continues to evolve, in part because unlike in the transport of high-energy photons from PETor X-ray, a linear photon path often cannot be assumed.

  169. AntiCancer, Inc. Image from web site at www.anticancer.com.

  170. Shah N, Cerussi A, Eker C, Espinoza J, Butler J, Fishkin J, Hornung R, Tromberg B: Noninvasive functional optical spectroscopy of human breast tissue. Proc Natl Acad Sci USA 98(8): 4420–4425, 2001

    Google Scholar 

  171. Cerussi AE, Jakubowski D, Shah N, Bevilacqua F, Lanning R, Berger AJ, Hsiang D, Butler J, Holcombe RF, Tromberg BJ: Spectroscopy enhances the information content of optical mammography. J Biomed Opt 7(1): 60–71, 2002

    Google Scholar 

  172. Fishkin JB, Coquoz O, Andersen ER, Brenner M, Tromberg BJ: Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject. Appl Optics 36: 141–153, 1997

    Google Scholar 

  173. De Blasi RA, Fantini RA, Franceschini MA, Ferrari MA, Gratton E: Cerebral and muscle oxygen saturation measurement by frequency-domain near-infrared spectrometer. Med Biol Eng Comp 33: 228–230, 1995.

    Google Scholar 

  174. Benaron DA, Rubinski B, Hintz SR, et al.: Automated Quantitation of tissue components using real-time spectroscopy. In Benapon DA, Chance B, Ferrori M, eds. Photon Propagation in Tissues II. SPIE 3194: 500–511, 1997

  175. Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle. Anal Biochem 174: 698–707, 1988

  176. Quaresima V, Homma S, Azuma K, Shimizu S, Chiarotti F, Ferrari M, Kagaya A: Calf and shin muscle oxygenation patterns and femoral artery blood flow during dynamic plantar flexion exercise in humans. Eur J Appl Physiol 84(5): 387–394, 2001

    Google Scholar 

  177. De Blasi RA, Quaglia E, Gasparetto A, Ferrari M: Muscle oxygenation by fast near infrared spectrophotometry (NIRS) in ischemic forearm. Adv Exp Med Biol 316: 163–172, 1992

    Google Scholar 

  178. Chance B, Zhaung Z, UnAh C, Alter C, Lipton L: Cognition activated low-frequency modulation of light absorption in human brain. Proc Natl Acad Sci USA 90: 3770–3774, 1993

    Google Scholar 

  179. Benaron DA, Hintz SR, Villringer A, et al.: Noninvasive functional imaging of human brain using light. J Cereb Blood Flow Metab 20: 469–477, 2000

    Google Scholar 

  180. Hintz SR, Benaron DA, Siegel AM, Zourabian A, Stevenson DK, Boas DA: Bedside functional imaging of the premature infant brain during passive motor activation. J Perinat Med 29: 335–343, 2001

    Google Scholar 

  181. Chance B: Near-infrared (NIR) optical spectroscopy characterizes breast tissue hormonal and age status. Acad Radiol 8: 209–210, 2001

    Google Scholar 

  182. Under the name FireFly tissue oximeter. Unpublished data, under review. See www.spectros.com up to date information on FireFly trials and results

  183. Schomacker KT, Frisoli JK, Compton CC, Flotte TJ, Richter JM, Nishioka NS, Deutsch TF: Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential. Lasers Surg Med 12(1): 63–78, 1992

    Google Scholar 

  184. Ramanujam N, Mitchell MF, Mahadevan A, Thomsen S, Malpica A, Wright T, Atkinson N, Richards-Kortum R: Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser-induced fluorescence spectra at multiple excitation wavelengths. Lasers Surg Med 19(1): 63–74, 1996

    Google Scholar 

  185. Drezek R, Sokolov K, Utzinger U, Boiko I, Malpica A, Follen M, Richards-Kortum R: Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications. J Biomed Opt 6(4): 385–396, 2001

    Google Scholar 

  186. Nordstrom RJ, Burke L, Niloff JM, Myrtle JF: Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy. Lasers Surg Med 29(2): 118–127, 2001

    Google Scholar 

  187. Schantz SP, Kolli V, Savage HE, Yu G, Shah JP, Harris DE, Katz A, Alfano RR, Huvos AG: In vivo native cellular fluorescence and histological characteristics of head and neck cancer. Clin Cancer Res 4(5): 1177–1182, 1998

    Google Scholar 

  188. Georgakoudi I, Jacobson BC, Muller MG, Sheets EE, Badizadegan K, Carr-Locke DL, Crum CP, Boone CW, Dasari RR, Van Dam J, Feld MS: NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res 62(3): 682–687, 2002

    Google Scholar 

  189. Georgakoudi I, Sheets EE, Muller MG, Backman V, Crum CP, Badizadegan K, Dasari RR, Feld MS: Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo. Am J Obstet Gynecol 186(3): 374–382, 2002

    Google Scholar 

  190. Herman P, Maliwal BP, Lin HJ, Lakowicz JR: Frequency-domain fluorescence microscopy with the LED as a light source. J Microsc 203(Pt 2): 176–181, 2001

    Google Scholar 

  191. Cubeddu R, Canti G, Pifferi A, Taroni P, Valentini G: Fluorescence lifetime imaging of experimental tumors in hematoporphyrin derivative-sensitized mice. Photochem Photobiol 66(2): 229–236, 1997

    Google Scholar 

  192. McGill N, Dieppe PA, Bowden M, Gardiner DJ, Hall M: Identification of pathological mineral deposits by Raman microscopy. Lancet 337(8733): 77–78, 1991

    Google Scholar 

  193. Baraga JJ, Feld MS, Rava RP: In situ optical histochemistry of human artery using near infrared Fourier transform Raman spectroscopy. Proc Natl Acad Sci USA 89(8): 3473–3477, 1992

    Google Scholar 

  194. Manoharan R, Baraga JJ, Feld MS, Rava RP: Quantitative histochemical analysis of human artery using Raman spectroscopy. J Photochem Photobiol B 16(2): 211–233, 1992

    Google Scholar 

  195. Stone N, Stavroulaki P, Kendall C, Birchall M, Barr H: Raman spectroscopy for early detection of laryngeal malignancy: preliminary results. Laryngoscope 110(10 Pt 1): 1756–1763, 2000

    Google Scholar 

  196. Bakker Schut TC, Witjes MJ, Sterenborg HJ, Speelman OC, Roodenburg JL, Marple ET, Bruining HA, Puppels GJ: in vivo detection of dysplastic tissue by Raman spectroscopy. Anal Chem 72(24): 6010–6018, 2000

    Google Scholar 

  197. Rollins AM, Yazdanfar S, Barton JK, Izatt JA: Real-time in vivo color Doppler optical coherence tomography. J Biomed Opt 7(1): 123–129, 2002

    Google Scholar 

  198. Benaron DA, Cheong WF, Stevenson DK: Tissue optics. Science 276(5321): 2002–2003, 1997

    Google Scholar 

  199. Stanga PE, Bird AC: Optical coherence tomography (OCT): principles of operation, technology, indications in vitreoretinal imaging and interpretation of results. Int Ophthalmol 23(4-6): 191–197, 2001

    Google Scholar 

  200. Jesser CA, Boppart SA, Pitris C, Stamper DL, Mielsen GP, Brezinski ME, Fujomoto JG: High resolution imaging of transitional cell carcinoma with optical coherence tomography: feasibility for the evaluation of bladder pathology. Br J Radiol 72: 1170–1176, 1999

    Google Scholar 

  201. Li XD, Boppart SA, Van Dam J, Mashimo H, Mutinga M, Drexler W, Klein M, Pitris C, Krinsky ML, Brezinski ME, Fujimoto JG: Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett's esophagus. Endoscopy 32(12): 921–930, 2000

    Google Scholar 

  202. Poneros JM, Brand S, Bouma BE, Tearney GJ, Compton CC, Nishioka NS: Diagnosis of specialized intestinal metaplasia by optical coherence tomography. Gastroenterology 120(1): 7–12, 2001

    Google Scholar 

  203. Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitris C, Southern JF, Fujimoto JG: in vivo endoscopic optical biopsy with optical coherence tomography. Science 276(5321): 2037–2039, 1997

    Google Scholar 

  204. Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung KB, Choi KB, Shishkov M, Schlendorf K, Pomerantsev E, Houser SL, Aretz HT, Tearney GJ: Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 39(4): 604–609, 2002

    Google Scholar 

  205. Backman V: Polarized light scattering spectroscopy for quantitative measurement of epithelial structures in situ. IEEE J Sel Topics Quant Elec 5(4): 1019–1026, 1999

    Google Scholar 

  206. Mourant JR, Canpolat M, Brocker C, Esponda-Ramos O, Johnson TM, Matanock A, Stetter K, Freyer JP: Light scattering from cells: the contribution of the nucleus and the effects of proliferative status. J Biomed Opt 5(2): 131–137, 2000

    Google Scholar 

  207. Mourant JR, Hielscher AH, Eick AA, Johnson TM, Freyer JP: Evidence of intrinsic differences in the light scattering properties of tumorigenic and nontumorigenic cells. Cancer 84(6): 366–374, 1998

    Google Scholar 

  208. Jiang H, Pierce J, Sevick-Muraca E: Measurement of particle-size distribution and volume fraction in concentrated suspensions with photon migration techniques. Appl Optics 36(15): 3310–3318, 1997

    Google Scholar 

  209. Balgi G, Reynolds J, Mayer RH, Cooley RE, Sevick-Muraca EM: Measurements of multiply scattered light for on-line monitoring of changes in size distribution of cell debris suspension. Biotechnol Prog 15(6): 1106–1114, 1999

    Google Scholar 

  210. Beauvoit B, Evans SM, Jenkins TW, Miller EE, Chance B: Correlation between the light scattering and the mitochondrial content of normal tissues and transplantable rodent tumors. Anal Biochem 226(1): 167–174, 1995

    Google Scholar 

  211. Beuthan J, Minet O, Helfmann J, Herrig M, Muller G: The spatial variation of the refractive index in biological cells. Phys Med Biol 41(3): 369–382, 1996

    Google Scholar 

  212. Cotran RS, Kumar V, Collins T (eds) Robbins Pathological Basis of Disease, WB Saunders. Toronto, 1425 pp

  213. Hawrysz DJ, Sevick-Muraca EM: Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents. Neoplasia 2(5): 388–417, 2000

    Google Scholar 

  214. Achliefu S, Dorshow RB, Bugal JE, Rajagopalan R: Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging. J Inves Radiol 35: 479–485, 2000

    Google Scholar 

  215. Ballou B, Fisher GW, Waggoner AS, Farkas DL, Reiland JM, Jaffe R, Mujumdar RB, Mujumdar SR, Hakala TR: Tumor labeling in vivo using cyanine-conjugated monoclonal antibodies. Cancer Immnol Immunother 41: 257–263, 1995

    Google Scholar 

  216. Licha K, Riefke B, Ntziachristos V, Becker A, Chance B, Semmler W: Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization. Photochem Photobiol 72(3): 392–398, 2000

    Google Scholar 

  217. Bornhop DJ, Hubbard DS, Houlne MP, Adair C, Kiefer GE, Pence BC, Morgan DL: Fluorescent tissue site-selective lanthanide chelate, Tb-PCTMB for enhanced imaging of cancer. Anal Chem 71(14): 2607–2615, 1999

    Google Scholar 

  218. Chen Y, Kalas RM, Faris GW: Spectroscopic properties of upconverting phosphor reporters. In: Bornhop, DJ, Contag CH, Sevick-Muraca EM (eds) Biomedical Imaging: Reporters, Dyes, and Instrumentation, Proceedings of SPIE Vol 3600, 1999, pp 151–157

  219. Becker A, Riefke B, Ebert B, Sukowski U, Rinneberg H, Semmler W, Licha K: Macromolecular contrast agents for optical imaging of tumors: comparison of indotricarbocyanine-labeled human serum albumin and transferrin. Photochem Photobiol 72(2): 234–241, 2000

    Google Scholar 

  220. Hirsch JI, Tisnado J, Cho SR, Beachley MC: Use of isosulfan blue for identification of lymphatic vessels: experimental and clinical evaluation. AJR Am J Roentgenol 139(6): 1061–1064, 1982

    Google Scholar 

  221. Andersson-Engels S, Klinteberg C, Svanberg K, Svanberg S: in vivo fluorescence imaging for tissue diagnostics. Phys Med Biol 42(5): 815–824, 1997

    Google Scholar 

  222. Andersson-Engels S, Canti G, Cubeddu R, Eker C, af Klinteberg C, Pifferi A, Svanberg K, Svanberg S, Taroni P, Valentini G, Wang I: Preliminary evaluation of two fluorescence imaging methods for the detection and the delineation of basal cell carcinomas of the skin. Lasers Surg Med 26(1): 76–82, 2000

    Google Scholar 

  223. Svanberg K, Wang I, Colleen S, Idvall I, Ingvar C, Rydell R, Jocham D, Diddens H, Bown S, Gregory G, Montan S, Andersson-Engels S, Svanberg S: Clinical multi-colour fluorescence imaging of malignant tumours - initial experience. Acta Radiol 39(1): 2–9, 1998

    Google Scholar 

  224. Benaron DA, Contag PR, Contag CH: Imaging brain structure and function, infection and gene expression in the body using light. Philos Trans R Soc Lond B Biol Sci 352(1354): 755–761, 1997

    Google Scholar 

  225. Contag CH, Contag PR, Mullins JI, Spilman SD, Stevenson DK, Benaron DA: Photonic detection of bacterial pathogens in living hosts. Mol Microbiol 18(4): 593–603, 1995

    Google Scholar 

  226. Nicolas JC: Applications of low-light imaging to life sciences. J Biolumin Chemilumin 9(3): 139–144, 1994

    Google Scholar 

  227. Dirnagl U, Lindauer U, Them A, Schreiber S, Pfister HW, Koedel U, Reszka R, Freyer D, Villringer A: Global cerebral ischemia in the rat: online monitoring of oxygen free radical production using chemiluminescence in vivo. J Cereb Blood Flow Metab 15(6): 929–940, 1995

    Google Scholar 

  228. Cutrin JC, Boveris A, Zingaro B, Corvetti G, Poli G: In situ determination by surface chemiluminescence of temporal relationships between evolving warm ischemia-reperfusion injury in rat liver and phagocyte activation and recruitment. Hepatology 31(3): 622–632, 2000

    Google Scholar 

  229. Proposal to the Baxter Foundation, Stanford University School of Medicine, Benaron DA and Contag CH (DA Benaron, PI) 1994

  230. Bhaumik S, Gambhir SS: Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci USA 99(1): 377–382, 2002

    Google Scholar 

  231. Image provided by Anticancer, Inc., San Diego, CA

  232. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC: Green fluorescent protein as a marker for gene expression. Science 263: 802–805, 1994

    Google Scholar 

  233. Girotti M, Banting G: TGN38-green fluorescent protein hybrid proteins expressed in stably transfected cells provide a tool for the real-time, in vivo study of membrane traffic pathways and suggest a possible role for ratTGN38. J Cell Sci 109: 2915–2926, 1996

    Google Scholar 

  234. Hoogenraad, JH, van der Mark MB, Colak SB, Hooft GW, van der Linden, ES: First results from the Philips optical mammoscope, In: Benaron DA, Chance B, Ferrari M (eds) Photon Propagation in Tissues III Proceedings of SPIE, Vol 3194, 1997, pp 184–190

  235. Gotz L, Heywang-Kobrunner SH, Schutz O, Siebold H: [Optical mammography in preoperative patients]. Aktuelle Radiol 8(1): 31–33, 1998 (German)

    Google Scholar 

  236. Karwinski B, Svendsen E, Hartveit F: Clinically undiagnosed malignant tumours found at autopsy. APMIS 98(6): 496–500, 1990

    Google Scholar 

  237. Yang CR, Ou YC, Ho HC, Kao YL, Cheng CL, Chen JT, Chen LP, Ho WL: Unsuspected prostate carcinoma and prostatic intraepithelial neoplasm in Taiwanese patients undergoing cystoprostatectomy. Mol Urol 3(1): 33–39, 1999

    Google Scholar 

  238. Brawn PN, Kuhl D, Speights VO, Johnson CF 3rd, Lind M: The incidence of unsuspected metastases from clinically benign prostate glands with latent prostate carcinoma. Arch Pathol Lab Med 119(8): 731–733, 1995

    Google Scholar 

  239. Redding WH, Coombes RC, Monaghan P: Detection of micrometastases in patients with primary breast cancer. Lancet 2: 1271–1273, 1983

    Google Scholar 

  240. Stahel RA, Mabry M, Sharkin AT, Speak J, Bernal SD: Detection of bone marrow metastases in small-cell lung cancer by monoclonal antibody. J Clin Oncol 3: 455–456, 1985

    Google Scholar 

  241. Edelstein RA, Zietman AL, de las Morenas A et al.: Implication of prostatic micrometastases to the pelvic lymph nodes: an archival tissue study. Urology 47: 370–375, 1996

    Google Scholar 

  242. Pan Y, Lavelle JP, Bastacky SI, Meyers S, Pirtskhalaishvili G, Zeidel ML, Farkas DL: Detection of tumorigenesis in rat bladders with optical coherence tomography. Med Phys 28(12): 2432–2440, 2001

    Google Scholar 

  243. Gurjar RS, Backman V, Perelman LT, Georgakoudi I, Badizadegan K, Itzkan I, Dasari RR, Feld MS: Imaging human epithelial properties with polarized light-scattering spectroscopy. Nat Med 7(11): 1245–1248, 2001

    Google Scholar 

  244. Weissleder R, Moore A, Mahmood U: In vivo magnetic resonance imaging of transgene expression. Nat Med 6: 351–355, 2000

    Google Scholar 

  245. Ghossein RA, Bhattacharya S: Molecular detection and characterization of circulating tumour cells and micrometastases in solid tumors. Eur J Cancer 36: 1681–1694, 2000

    Google Scholar 

  246. Benaron DA, Parchikon IH, Talmi YI, Scardino PT: Real-time optical imaging system for operating room use. Presented at 1st Annual Meeting of the Society for Molecular Imaging. Boston, MA, August 24-26 2002.

  247. Benaron DA: Optical Contrast Agents. Presented Joint Working Group on Quantitative in vivo Functional Imaging in Oncology. Washington DC, USA, January 6-8, 1999

  248. Benaron DA, Cheong W-F, Duchworth JL: Automated classification of tissue by type using real-time spectroscopy. In Photon Propagation in Tissues III. Benaron DA, Chance B, Ferrari M, Kohl M, eds. SPIE 3194: 99–109, 1997

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benaron, D.A. The Future of Cancer Imaging. Cancer Metastasis Rev 21, 45–78 (2002). https://doi.org/10.1023/A:1020131208786

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020131208786

Navigation