Skip to main content
Log in

Stable iterations for the matrix square root

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Any matrix with no nonpositive real eigenvalues has a unique square root for which every eigenvalue lies in the open right half-plane. A link between the matrix sign function and this square root is exploited to derive both old and new iterations for the square root from iterations for the sign function. One new iteration is a quadratically convergent Schulz iteration based entirely on matrix multiplication; it converges only locally, but can be used to compute the square root of any nonsingular M-matrix. A new Padé iteration well suited to parallel implementation is also derived and its properties explained. Iterative methods for the matrix square root are notorious for suffering from numerical instability. It is shown that apparently innocuous algorithmic modifications to the Padé iteration can lead to instability, and a perturbation analysis is given to provide some explanation. Numerical experiments are included and advice is offered on the choice of iterative method for computing the matrix square root.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Albrecht, Bemerkungen zu Iterationsverfahren zur Berechnung von A1/2 und A-1, Z. Angew. Math. Mech. 57 (1977) T262–T263.

    Google Scholar 

  2. ] G. Alefeld and N. Schneider, On square roots of M-matrices, Linear Algebra Appl. 42 (1982) 119–132.

    Google Scholar 

  3. A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences (Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1994; first published 1979 by Academic Press).

    Google Scholar 

  4. Å. Björck and S. Hammarling, A Schur method for the square root of a matrix, Linear Algebra Appl. 52/53 (1983) 127–140.

    Google Scholar 

  5. G.J. Butler, C.R. Johnson and H. Wolkowicz, Nonnegative solutions of a quadratic matrix equation arising from comparison theorems in ordinary differential equations, SIAM J. Alg. Disc. Meth. 6(1) (1985) 47–53.

    Google Scholar 

  6. R. Byers, Solving the algebraic Riccati equation with the matrix sign function, Linear Algebra Appl. 85 (1987) 267–279.

    Google Scholar 

  7. G.W. Cross and P. Lancaster, Square roots of complex matrices, Linear and Multilinear Algebra 1 (1974) 289–293.

    Google Scholar 

  8. E.D. Denman and A.N. Beavers, Jr., The matrix sign function and computations in systems, Appl. Math. Comput. 2 (1976) 63–94.

    Google Scholar 

  9. L. Dieci, B. Morini and A. Papini, Computational techniques for real logarithms of matrices, SIAM J. Matrix Anal. Appl. 17(3) (1996) 570–593.

    Google Scholar 

  10. G.H. Golub and C.F. Van Loan, Matrix Computations (Johns Hopkins Univ. Press, 3rd ed., Baltimore, MD, USA, 1996).

    Google Scholar 

  11. L.A. Hageman and D.M. Young, Applied Iterative Methods (Academic Press, New York, 1981).

    Google Scholar 

  12. N.J. Higham, Computing the polar decomposition – with applications, SIAM J. Sci. Statist. Comput. 7(4) (1986) 1160–1174.

    Google Scholar 

  13. N.J. Higham, Newton's method for the matrix square root, Math. Comp. 46(174) (1986) 537–549.

    Google Scholar 

  14. N.J. Higham, Computing real square roots of a real matrix, Linear Algebra Appl. 88/89 (1987) 405–430.

    Google Scholar 

  15. N.J. Higham, The Test Matrix Toolbox for Matlab (version 3.0), Numerical Analysis Report No. 276, Manchester Centre for Computational Mathematics, Manchester, England, September (1995) 70 pp.

    Google Scholar 

  16. N.J. Higham, The matrix sign decomposition and its relation to the polar decomposition, Linear Algebra Appl. 212/213 (1994) 3–20.

    Google Scholar 

  17. N.J. Higham, Accuracy and Stability of Numerical Algorithms (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1996).

    Google Scholar 

  18. N.J. Higham and P. Papadimitriou, A parallel algorithm for computing the polar decomposition, Parallel Comput. 20(8) (1994) 1161–1173.

    Google Scholar 

  19. N.J. Higham and R.S. Schreiber, Fast polar decomposition of an arbitrary matrix, SIAM J. Sci. Statist. Comput. 11(4) (1990) 648–655.

    Google Scholar 

  20. R.A. Horn and C.R. Johnson, Matrix Analysis (Cambridge University Press, 1985).

  21. R.A. Horn and C.R. Johnson, Topics in Matrix Analysis (Cambridge University Press, 1991).

  22. W.D. Hoskins and D.J. Walton, A faster method of computing the square root of a matrix, IEEE Trans. Automat. Control. AC-23(3) (1978) 494–495.

    Google Scholar 

  23. T.J.R. Hughes, I. Levit and J. Winget, Element-by-element implicit algorithms for heat conduction, J. Eng. Mech. 109(2) (1983) 576–585.

    Google Scholar 

  24. C. Kenney and A.J. Laub, Condition estimates for matrix functions, SIAM J. Matrix Anal. Appl. 10(2) (1989) 191–209.

    Google Scholar 

  25. C. Kenney and A.J. Laub, Padé error estimates for the logarithm of a matrix, Internat J. Control 50(3) (1989) 707–730.

    Google Scholar 

  26. C. Kenney and A.J. Laub, Rational iterative methods for the matrix sign function, SIAM J. Matrix Anal. Appl. 12(2) (1991) 273–291.

    Google Scholar 

  27. C. Kenney and A.J. Laub, On scaling Newton's method for polar decomposition and the matrix sign function, SIAM J. Matrix Anal. Appl. 13(3) (1992) 688–706.

    Google Scholar 

  28. C.S. Kenney and A.J. Laub, A hyperbolic tangent identity and the geometry of Padé sign function iterations, Numerical Algorithms 7 (1994) 111–128.

    Google Scholar 

  29. C.S. Kenney and A.J. Laub, The matrix sign function, IEEE Trans. Automat. Control 40(8) (1995) 1330–1348.

    Google Scholar 

  30. P. Laasonen, On the iterative solution of the matrix equation AX2-I = 0, M.T.A.C. 12 (1958) 109–116.

    Google Scholar 

  31. P. Pandey, C. Kenney and A.J. Laub, A parallel algorithm for the matrix sign function, Internat. J. High Speed Comput. 2(2) (1990) 181–191.

    Google Scholar 

  32. B.N. Parlett, The Symmetric Eigenvalue Problem (Prentice-Hall, Englewood Cliffs, NJ, 1980).

    Google Scholar 

  33. P. Pulay, An iterative method for the determination of the square root of a positive definite matrix, Z. Angew. Math. Mech. 46 (1966) 151.

    Google Scholar 

  34. J.D. Roberts, Linear model reduction and solution of the algebraic Riccati equation by use of the sign function, Internat. J. Control 32(4) (1980) 677–687. First issued as report CUED/B-Control/TR13, Department of Engineering, University of Cambridge (1971).

    Google Scholar 

  35. B.A. Schmitt, An algebraic approximation for the matrix exponential in singularly perturbed boundary value problems, SIAM J. Numer. Anal. 27(1) (1990) 51–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higham, N.J. Stable iterations for the matrix square root. Numerical Algorithms 15, 227–242 (1997). https://doi.org/10.1023/A:1019150005407

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019150005407

Navigation