Skip to main content
Log in

The Quadrature Discretization Method (QDM) in comparison with other numerical methods of solution of the Fokker–Planck equation for electron thermalization

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The determination of the relaxation of electrons in atomic gases continues to be an important physical problem. The main interest is the determination of the time scale for the thermalization of electrons in different moderators and the nature of the time‐dependent electron energy distribution. The theoretical basis for the study of electron thermalization is the determination of the electron distribution function from a solution of the Lorentz–Fokker–Planck equation. The present paper considers a detailed comparison of different numerical methods of solution of the Lorentz–Fokker–Planck equation for the electron distribution function. The methods include a pseudospectral method referred to as the Quadrature Discretization Method (QDM) which is based on non‐standard polynomial basis sets, a finite‐difference method, and a Lagrange interpolation method. The Fokker–Planck equation can be transformed to a Schrödinger equation, and methods developed for the solution of either equation apply to the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. lackmore and B. Shizgal, J. Comput. Phys. 55 (1984) 313.

    Google Scholar 

  2. R. Blackmore and B. Shizgal, Phys. Rev. A 31 (1985) 1855.

    Google Scholar 

  3. G.L. Braglia, Riv. Nuovo Cimento 18 (1995) 1.

    Google Scholar 

  4. G.L. Braglia, M. Diligenti, J. Wilhelm and R. Winkler, Nuovo Cimento D 12 (1990) 257.

    Google Scholar 

  5. G.L. Braglia and L. Ferrari, Nuovo Cimento B 4 (1971) 245.

    Google Scholar 

  6. G.L. Braglia and P. Minari, Contr. Plasma Phys. 34 (1994) 711.

    Google Scholar 

  7. C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods in Fluid Dynamics (Springer, New York, 1987).

    Google Scholar 

  8. J.S. Chang and G. Cooper, J. Comput. Phys. 6 (1970) 1.

    Google Scholar 

  9. H. Chen and B.D. Shizgal, J. Math. Chem. 24 (1998) 321.

    Google Scholar 

  10. A. Comtet, A.D. Bandrauk and D.K. Campbell, Phys. Lett. 150B (1985) 159.

    Google Scholar 

  11. H. Date, S. Yachi, K. Kondo and H. Tagashira, J. Phys. D 25 (1992) 42.

    Google Scholar 

  12. M. Dillon and M. Kimura, Phys. Rev. A 52 (1995) 1178.

    Google Scholar 

  13. P.J. Drallos and J.M. Wadehra, Phys. Rev. A 40 (1989) 1967.

    Google Scholar 

  14. R. Dutt, A. Khare and U.P. Sukhatme, Am. J. Phys. 56 (1988) 163.

    Google Scholar 

  15. M.J. Englefield, J. Stat. Phys. 52 (1988) 369.

    Google Scholar 

  16. M.J. Englefield, Physica A 167 (1990) 877.

    Google Scholar 

  17. E.M. Epperlein, Laser Particle Beams 12 (1994) 257; J. Comput. Phys. 112 (1994) 291.

    Google Scholar 

  18. B. Fornberg, A Practical Guide to Pseudospectral Methods (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  19. W. Gautschi, J. Comput. Appl. Math. 12 (1985) 61.

    Google Scholar 

  20. A. Gilardini, Low Energy Electron Collisions in Gases (Wiley, New York, 1974).

    Google Scholar 

  21. N. Goto and T. Makabe, J. Phys. D 23 (1990) 686.

    Google Scholar 

  22. D. Gottlieb and S. Orszag, Numerical Analysis of Spectral Methods (SIAM-CBMS, Philadelphia, 1977).

    Google Scholar 

  23. G.N. Haddad and T.F. O'Malley, Austr. J. Phys. 35 (1982) 35.

    Google Scholar 

  24. L.G.H. Huxley and R.W. Crompton, The Diffusion and Drift of Electrons in Gases (Wiley, New York, 1974).

    Google Scholar 

  25. K.D. Knierim, M. Waldman and E.A. Mason, J. Chem. Phys. 77 (1982) 943.

    Google Scholar 

  26. K. Kondo and H. Tagashira, J. Phys. D 26 (1993) 1948.

    Google Scholar 

  27. K. Koura, J. Chem. Phys. 84 (1986) 6227; 82 (1985) 2556; 81 (1984) 4180.

    Google Scholar 

  28. K. Koura, J. Chem. Phys. 87 (1987) 6481.

    Google Scholar 

  29. K. Kowari, Phys. Rev. A 53 (1996) 853.

    Google Scholar 

  30. K. Kowari, L. Demeio and B.D. Shizgal, J. Chem. Phys. 97 (1992) 2061.

    Google Scholar 

  31. I. Krajcar-Bronic and M. Kimura, J. Chem. Phys. 103 (1995) 7104.

    Google Scholar 

  32. I. Krajcar-Bronic, M. Kimura and M. Inokuti, J. Chem. Phys. 102 (1996) 6552.

    Google Scholar 

  33. E.W. Larsen, C.D. Livermore, G.C. Pomraning and J.G. Sanderson, J. Comput. Phys. 61 (1985) 359.

    Google Scholar 

  34. K. Leung, J.C. Barrett and B. Shizgal, Chem. Phys. 147 (1990) 257.

    Google Scholar 

  35. G. Mansell, W. Merryfield, B. Shizgal and U. Weinert, Comput. Methods Appl. Mech. Engrg. 104 (1993) 295.

    Google Scholar 

  36. D.R.A. McMahon, K. Ness and B. Shizgal, J. Phys. B 19 (1986) 2759.

    Google Scholar 

  37. D.R.A. McMahon and B. Shizgal, Phys. Rev. A 31 (1985) 1894.

    Google Scholar 

  38. T. Miyazawa, Phys. Rev. A 39 (1989) 1447.

    Google Scholar 

  39. A. Mozumder, J. Chem. Phys. 72 (1980) 1657, 6289; 74 (1981) 6911; 76 (1982) 3277.

    Google Scholar 

  40. R. Nagpal and A. Carscadden, Phys. Rev. Lett. 73 (1994) 1598.

    Google Scholar 

  41. K.F. Ness and R. Robson, Phys. Rev. A 34 (1986) 2185.

    Google Scholar 

  42. T. Nishigori, Nucl. Sci. Engrg. 108 (1991) 347; Chem. Phys. Lett. 221 (1994) 492.

    Google Scholar 

  43. T. Nishigori and B. Shizgal, J. Chem. Phys. 89 (1988) 3275.

    Google Scholar 

  44. H. Okamoto, J. Phys. A 23 (1990) 5535.

    Google Scholar 

  45. B.T. Park and V. Petrosian, Astrophys. J. Suppl. Ser. 103 (1996) 255; Astrophys. J. 446 (1995) 699.

    Google Scholar 

  46. H. Risken and K. Voigtlaender, Z. Phys. B 54 (1984) 253.

    Google Scholar 

  47. R. Robson and K.F. Ness, Phys. Rev. A 33 (1986) 2068.

    Google Scholar 

  48. R.E. Robson, K.F. Ness, G.E. Sneddon and L.A. Viehland, J. Comput. Phys. 92 (1991) 213.

    Google Scholar 

  49. R.E. Robson and A. Pritz, Austr. J. Phys. 46 (1993) 465.

    Google Scholar 

  50. H. Shimamori and T. Sunagawa, Chem. Phys. Lett. 267 (1997) 334.

    Google Scholar 

  51. B. Shizgal, J. Comput. Phys. 41 (1981) 309.

    Google Scholar 

  52. B. Shizgal, Chem. Phys. 147 (1990) 271.

    Google Scholar 

  53. B.D. Shizgal and H. Chen, J. Chem. Phys. 104 (1996) 4137.

    Google Scholar 

  54. B. Shizgal and D.R.A. McMahon, Phys. Rev. A 32 (1985) 3669.

    Google Scholar 

  55. B. Shizgal, D.A.R. McMahon and L.A. Viehland, Radiat. Phys. Chem. 34 (1989) 35.

    Google Scholar 

  56. B. Shizgal and T. Nishigori, Chem. Phys. Lett. 171 (1990) 493.

    Google Scholar 

  57. M. Suzuki, in: Order and Fluctuations in Equilibrium and Nonequilibrium Statistical Mechanics, eds. G. Nicolis, G. Dewel and J.W. Tuerner (Wiley, New York, 1981).

    Google Scholar 

  58. B.L. Tembe and A. Mozumder, J. Chem. Phys. 78 (1983) 2030; 81 (1984) 2492; Phys. Rev. 27 (1983) 3274.

    Google Scholar 

  59. S. Ushiroda, S. Kajita and Y. Kondo, J. Phys. D 23 (1990) 47.

    Google Scholar 

  60. L.A. Viehland, S. Ranganathan and B. Shizgal, J. Chem. Phys. 88 (1988) 362.

    Google Scholar 

  61. J.M. Warman, U. Sowada and M.P. de Haas, Phys. Rev. A 31 (1985) 1974.

    Google Scholar 

  62. R. Winkler, J. Wilhelm, G.L. Braglia and M. Diligenti, Nuovo Cimento D 12 (1990) 975.

    Google Scholar 

  63. S. Yachi, H. Date, K. Kitamori and H. Tagashira, J. Phys. D 24 (1991) 573.

    Google Scholar 

  64. H.H. Yang, B.R. Seymour and B.D. Shizgal, Comp. Fluids 23 (1994) 829.

    Google Scholar 

  65. H.H. Yang and B. Shizgal, Comput. Methods Appl. Mech. Engrg. 118 (1994) 47.

    Google Scholar 

  66. M. Yousfi, A. Hennad and A. Alkan, Phys. Rev. E 49 (1994) 3264.

    Google Scholar 

  67. M. Yumoto, Y. Kuroda and T. Sakai, J. Phys. D 24 (1991) 1594.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, K., Shizgal, B.D. & Chen, H. The Quadrature Discretization Method (QDM) in comparison with other numerical methods of solution of the Fokker–Planck equation for electron thermalization. Journal of Mathematical Chemistry 24, 291–319 (1998). https://doi.org/10.1023/A:1019139207031

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019139207031

Keywords

Navigation