Skip to main content
Log in

Exopolysaccharide-producing cyanobacteria and their possible exploitation: A review

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Since the early 1950s, more than one hundred cyanobacterial strains,belonging to twenty different genera, have been investigated with regard tothe production and the released exocellular polysaccharides (RPS) into theculture medium. The chemical and rheological properties show that suchpolysaccharides are complex anionic heteropolymers, in about 80% casescontaining six to ten different monosaccharides and in about 90% casescontaining one or more uronic acids; almost all have non-saccharidiccomponents, such as peptidic moieties, acetyl, pyruvyl and/or sulphategroups. Based on such ingredients, cyanobacterial RPSs show promise asthickening or suspending agents, emulsifying or cation-chelating compoundsand the residual capsulated cyanobacterial biomass, following RPSextraction, could be an effective cation-chelating material. Indeed, wheneleven unicellular and filamentous RPS-producing cyanobacteria, selectedon the basis of the anion density of their RPSs and on the abundance oftheir outermost investments, were screened for their ability to removeCu2+ from aqueous solutions, a quick and most effective heavy metaladsorption was observed for the unicellular Cyanothece CE 4 and thefilamentous Cyanospira capsulata. These results suggest the possibilityto accomplish, through the exploitation of RPS-producing cyanobacteria,a multiproduct strategy to procure a wide range of biopolymers suited tovarious industrial applications, in addition to the residual biomass effectivein the recovery of heavy metals from polluted waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkins EDT (1986) Biomolecular structures of naturally occurring carbohydrate polymers. Int. J. biol. Macromol. 8: 323-329.

    Google Scholar 

  • Bar-Or Y, Shilo M (1987) Characterization of macromolecular flocculants produced by Phormidium sp. strain J-1 and by Anabaenopsis circularis PCC 6720. Appl. environ. Microbiol. 53: 2226-2230.

    Google Scholar 

  • Bender J, Rodriguez-Eaton S, Ekanemesang UM, Phillips P (1994) Characterization of metal-binding bioflocculants produced by the cyanobacterial component of mixed microbial mats. Appl. environ. Microbiol. 60: 2311-2315.

    Google Scholar 

  • Cohen Z (1999) Chemicals from Microalgae. Taylor & Francis, London, 419 pp.

    Google Scholar 

  • De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol. Rev. 22: 151-175.

    Google Scholar 

  • De Philippis R, Ena A, Paperi R, Sili C, Vincenzini M (2000) Assessment of the potential of Nostoc strains from Pasteur Culture Collection for the production of polysaccharides of applied interest. J. appl. Phycol. 12: 401-407.

    Google Scholar 

  • De Philippis R, Margheri MC, Materassi R, Vincenzini M (1998) Potential of unicellular cyanobacteria from saline environments as exopolysaccharide producers. Appl. environ. Microbiol. 64: 1130-1132.

    Google Scholar 

  • De Philippis R, Margheri MC, Pelosi E, Ventura S (1993) Exopolysaccharide production by a unicellular cyanobacterium isolated from a hypersaline habitat. J. appl. Phycol. 5: 387-394.

    Google Scholar 

  • De Vuyst L, Degeest B (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23: 153-177.

    Google Scholar 

  • Filali Mouhim R, Cornet JF, Fontaine T, Fournet B, Dubertret G (1993) Production, isolation and preliminary characterization of the exopolysaccharide of the cyanobacterium Spirulina platensis. Biotechnol. Let. 15: 567-572.

    Google Scholar 

  • Fischer D, Schlösser UG, Pohl P (1997) Exopolysaccharide production by cyanobacteria grown in closed photobioreactors and immobilized using white cotton towelling. J. appl. Phycol. 9: 205-213.

    Google Scholar 

  • Flaibani A, Olsen Y, Painter TJ (1989) Polysaccharides in desert reclamation: composition of exocellular proteoglycan complexes produced by filamentous blue-green and unicellular green edaphic algae. Carbohydr. Res. 190: 235-248.

    Google Scholar 

  • Garnham GW (1997) The use of algae as metal biosorbents. In Wase J, Forster C (eds), Biosorbents for Metal Ions. Taylor & Francis, London, pp. 11-37.

    Google Scholar 

  • Gloaguen V, Morvan H, Hoffmann L (1995) Released and capsular polysaccharides of Oscillatoriaceae (Cyanophyceae, Cyanobacteria). Alg. Stud. 78: 53-69.

    Google Scholar 

  • Hasui M, Matsuda M, Okutani K, Shigeta S (1995) In vitro antiviral activities of sulfated polysaccharides from marine microalga (Cochlodinium polykrikoides) against human immunodeficiency virus and other enveloped viruses. Int. J. biol. Macromol. 17: 293-297.

    Google Scholar 

  • Hayashi K, Hayashi T, Kojima I (1996) A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Res. hum. Retrovir. 12: 1463-1471.

    Google Scholar 

  • Hayashi T, Hayashi K (1996) Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J. nat. Prod. (Lloydia) 59: 83-87.

    Google Scholar 

  • Huang Z, Liu Y, Paulsen BS, Klaveness D (1998) Studies on polysaccharides from three edible species of Nostoc (cyanobacteria) with different colony morphologies: comparison of monosaccharide compositions and viscosities of polysaccharides from field colonies and suspension cultures. J. Phycol. 34: 962-968.

    Google Scholar 

  • Matulewicz CM, Percival EE, Weigel H (1984) Water-soluble polysaccharides of antarctic and cultured Phormidium species of Cyanophyceae. Phytochem. 23: 103-105.

    Google Scholar 

  • Mazor G, Kidron GJ, Vonshak A, Abeliovich A (1996) The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol. Ecol. 21: 121-130.

    Google Scholar 

  • Moreno J, Vargas MA, Madiedo JM, Muñoz J, Rivas J, Guerrero MG (2000) Chemical and rheological properties of an extracellular polysaccharide produced by the cyanobacterium Anabaena sp. ATCC 33047. Biotechnol. Bioengng 67: 283-290.

    Google Scholar 

  • Morvan H, Gloaguen V, Vebret L, Joset F, Hoffmann L (1997) Structure-function investigations on capsular polymers as a necessary step for new biotechnological applications: the case of the cyanobacterium Mastigocladus laminosus. Plant Physiol. Biochem. 35: 671-683.

    Google Scholar 

  • Nicolaus B, Panico A, Lama L, Romano I, Manca MC, De Giulio A, Gambacorta A (1999) Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria. Phytochem. 52: 639-647.

    Google Scholar 

  • Panoff JM, Priem B, Morvan H, Joset F (1988) Sulphated exopolysaccharides produced by two unicellular strains of cyanobacteria, Synechocystis PCC 6803 and 6714. Arch. Microbiol. 150: 558-563.

    Google Scholar 

  • Plude JL, Parker DL, Schommer OJ, Timmerman RJ, Hagstrom SA, Joers JM, Hnasko R (1991) Chemical characterization of polysaccharide from the slime layer of the cyanobacterium Microcystis flos-aquae C3-40. Appl. environ. Microbiol. 57: 1696-1700.

    Google Scholar 

  • Sangar VK, Dugan PR (1972) Polysaccharide produced by Anacystis nidulans: its ecological implication. Appl. Microbiol. 24: 732-734.

    Google Scholar 

  • Shah V, Ray A, Garg N, Madamwar D (2000) Characterization of the extracellular polysaccharide produced by a marine cyanobacterium Cyanothece sp. ATCC 51142, and its exploitation toward metal removal from solutions. Curr. Microbiol. 40: 274-278.

    Google Scholar 

  • Shepherd R, Rockey J, Sutherland IW, Roller S (1995) Novel bioemulsifiers from microorganisms for use in foods. J. Biotechnol. 40: 207-217.

    Google Scholar 

  • Sudo H, Grant Burgess J, Takemasa H, Nakamura N, Matsunaga T (1995) Sulfated exopolysaccharide production by the halophilic cyanobacterium Aphanocapsa halophytia. Curr. Microbiol. 30: 219-222.

    Google Scholar 

  • Sutherland IW (1990) Biotechnology of Microbial Polysaccharides.Cambridge University Press, Cambridge, 163 pp.

    Google Scholar 

  • Sutherland IW (1994) Structure-function relationships in microbial exopolysaccharides. Biotech. Adv. 12: 393-448.

    Google Scholar 

  • Sutherland IW (1996) Extracellular polysaccharides. In Rehm HJ, Reed G (eds), Biotechnology 6. VCH, Weinheim, pp. 615-657.

    Google Scholar 

  • Sutherland IW (1998) Novel and established applications of microbial polysaccharides. Tibtech 16: 41-46.

    Google Scholar 

  • Tease B, Jürgens UJ, Golecki JR, Heinrich UR, Rippka R, Weckesser J (1991) Fine-structural and chemical analyses on inner and outer sheath of the cyanobacterium Gloeothece sp. PCC 6909. Antonie van Leeuwenhoek 59: 27-34.

    Google Scholar 

  • Tseng CT, Zhao Y (1994) Extraction, purification and identification of polysaccharides of Spirulina (Arthrospira) platensis (Cyanophyceae). Alg. Stud. 75: 303-312.

    Google Scholar 

  • Urrutia MM (1997) General bacteria sorption processes. In Wase J, Forster C (eds), Biosorbents for Metal Ions. Taylor & Francis, London, pp. 39-66.

    Google Scholar 

  • Vincenzini M, De Philippis R, Sili C, Materassi R (1990) Studies on exopolysaccharide release by diazotrophic batch cultures of Cyanospira capsulata. Appl. Microbiol. Biotechnol. 34: 392-396.

    Google Scholar 

  • Wilde EW, Benemann JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotech. Adv. 11: 781-812.

    Google Scholar 

  • Wingender J, Neu TR, Flemming H-C (1999) What are bacterial extracellular polymeric substances? In Wingender J, Neu TR, Flemming H-C (eds), Microbial Extracellular Polymeric Substances. Springer, Berlin, pp. 1-19.

    Google Scholar 

  • Witvrouw M, De Clercq E (1997) Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen. Pharmacol. 29: 497-511.

    Google Scholar 

  • Wolfaardt G, Lawrence JR, Korber DR (1999) Function of EPS. In Wingender J, Neu TR, Flemming H-C (eds), Microbial extracellular polymeric substances. Springer, Berlin, pp. 171-200.

    Google Scholar 

  • Yamaguchi K (1997) Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: a review. J. appl. Phycol. 8: 487-502.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Philippis, R., Sili, C., Paperi, R. et al. Exopolysaccharide-producing cyanobacteria and their possible exploitation: A review. Journal of Applied Phycology 13, 293–299 (2001). https://doi.org/10.1023/A:1017590425924

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017590425924

Navigation