Skip to main content
Log in

Extracellular Matrix and Growth Factors During Heart Growth

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The effects of growth factors on tissue remodeling and cell differentiation depend on the nature of the extracellular matrix, the type and organization of integrins, the activation of metalloproteinases and the presence of secreted proteins associated to the matrix. These interactions are actually poorly known in the cardiovascular system. We describe here: 1) the main components of extracellular matrix within the cardiovascular system; 2) the role of integrins in the transmission of growth signals; 3) the shift in the expression of the components of the extracellular matrix (fibronectin and collagens) and the stimulation of the synthesis of metalloproteinases during normal and hypertrophic growth of the myocardium; 4) the effects of growth factors, such as Angiotensin II, Fibroblast Growth Factors (FGF), Transforming Growth Factor-β (TGF-β), on the synthesis of proteins of the extracellular matrix in the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference list

  1. Ruoslahti E. Proteoglycans as modulators of growth factor activities. Cell 1991;64:867–869.

    Google Scholar 

  2. Mulvany MJ. Resistence vessel growth and remodelling: cause or consequence in cardiovascular disease. J Hum Hypertens 1995;9:479–485.

    Google Scholar 

  3. Tryggvason K. The laminin family. Curr Op Cell Biol 1993;5:877–882.

    Google Scholar 

  4. Hynes RO. Integrins: versatility, modulation and signalling in cell adhesion. Cell 1992;69:11–25.

    Google Scholar 

  5. Schaper J, Speiser B. The extracellular matrix in the failing human heart. In: Hasenfuss G, Holubarsch C, Just H, Alpert N, eds. Cellular and molecular alterations in the failing human heart. Darmstadt: Steinkopff Verlag, 1992:303–313

    Google Scholar 

  6. Hsueh W, Law R, Do Y. Integrins, adhesion, and cardiac remodeling. Hypertension 1998;31 (part 2):176–180.

    Google Scholar 

  7. Juliano RL, Haskill S. Signal transduction from the extracellular matrix. J Cell Biol 1993;120:577–585.

    Google Scholar 

  8. Yamada KM, Miyamoto S. Integrin transmembrane signalling and cytoskeletal control. Curr Op Cell Biol 1995;7:681–689.

    Google Scholar 

  9. Speiser B, Riess CF, Schaper J. The extracellular matrix in human cardiac tissue. Part I: Collagens I, III, IV and VI. Cardioscience 1991;4:225–32.

    Google Scholar 

  10. Speiser B, Weihcrauch D, Riess CF, Schaper J. The extracellular matrix in human cardiac tissue. Part II: Vimentin, laminin and fibronectin. Cardioscience 1992;1:41–9.

    Google Scholar 

  11. Weber KT. Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol 1989;13:1637–1652.

    Google Scholar 

  12. Schwarzbauer JE. Fibronectin: from gene to protein. Curr Op Cell Biol 1991;3:786–791.

    Google Scholar 

  13. Iivanainen A, Sainio K, Sariola H, Tryggvason K. Primary structure and expression of a novel human laminin alpha 4 chain. FEBS Letters 1995;365:183–188.

    Google Scholar 

  14. Graf K, Do Y, Ashizawa N, Meehan W, Giachelli C, Marboe C, Fleck E, Hsueh W. Myocardial osteopontin expression is associated with left ventricular hypertrophy. Circulation 1997;96:3063–3071.

    Google Scholar 

  15. Mann DL, Spinale FG. Activation of matrix metalloproteinases in the failing human heart. Editorial. Circulation 1998;98:1699–1702.

    Google Scholar 

  16. Shapiro SD. Matrix metalloproteinase degradation of extracellular matrix: biological consequences. Curr Op Cell Biol 1998;5:602–608.

    Google Scholar 

  17. Wang H, Keiser JA. Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells: role of fit-1. Circ Res 1998;83:832–840.

    Google Scholar 

  18. Nagase H. Matrix metalloproteinases. In: Hooper NM, eds. Zinc Metalloproteinases in health and disease. London: Taylor and Francis, 1996

    Google Scholar 

  19. Robert V, Besse S, Sabri A, Silvestre J, Assayag P, Nguyen T, Swynghedauw B, Delcayre C. Differential regulation of Matrix Metalloproteinases associated with aging and hypertension in the rat heart. Lab Invest 1997;76:729–738.

    Google Scholar 

  20. Hardingham TE, Fosang AJ. Proteoglycans, many forms and many functions. FASEB J 1992;6:861–870.

    Google Scholar 

  21. Butzow R, Fukushima D, Twardzik DR, Ruoslathi E. A 60-kD protein mediates the binding of transforming growth factor-? to cell surface and extracellular matrix proteoglycans. J Cell Biol 1993;122:721–727.

    Google Scholar 

  22. Faham S, Hileman R, Fromm JR, Linhardt RJ, Rees DC. Heparin structure and interactions with basic fibroblast growth factor. Science 1996;271:1116–1120.

    Google Scholar 

  23. Belkin AM, Zhidkova N, Balzac F, Altruda F, Tomatis D, Maier A, Tarone G, Koteliansky VE, Burridge K. ?1D integrin displaces the B1A isoform in striated muscles: localization at junctional structures and signaling potential in non-muscle cells. J Cell Biol 1996;132:211–266.

    Google Scholar 

  24. Belkin AM, Retta F, Pletjushkina OY, Balzac F, Silengo L, Fassler R, Kotenliansky VE, Burridge K, Tarone G. Muscle ?1-D integrin reinforces the cytoskeleton-matrix link: modulation of integrin adhesive function by alternative splicing. J Cell Biol 1997;139:1583–1595.

    Google Scholar 

  25. Shyy JY, Chien S. Role of integrins in cellular responses to mechanical stress and adhesion. Curr Op Cell Biol 1997;9:707–713.

    Google Scholar 

  26. Plopper GE, Mc Namee HP, Dike LE, Bojanbowski K, Ingber DE. Convergence of integrins and growth factors receptor signaling pathways within the focal adhesion complex. Mol Biol Cell 1995;6:1349–1365.

    Google Scholar 

  27. Kuppuswamy D, Kerr C, Narishige T, Kasi V, Merrick DR, Cooper G. Association of tyrosine-phosphorylated cSrc with the cytoskeleton of hypertrophying myocardium. J Biol Chem 1997;272:4500–4508.

    Google Scholar 

  28. Hedin U, Bottger BA, Forsberg E, Johansson S, J T. Diverse effects of fibronectin and laminin on phenotypic properties of cultured arterial smooth muscle cells. J Cell Biol 1988;107:307–319.

    Google Scholar 

  29. Hedin U, Therberg J, Roy J, Dumitrescu A, Tran P. Role of tyrosine kinases in extracellular matrixmediated modulation of arterial smooth muscle cell phenotype. Arterioscl Thromb Vasc Biol. 1997;17:1977–1984.

    Google Scholar 

  30. MacKenna DA, Dolfi F, Vuori K, Ruoslahti E. Extracellular signal-regulated kinase and c-Jun NH2-terminal linase activation by mechanical stretch is integrin dependent and matrix-specific in rat cardiac fibroblasts. J Clin Invest 1998;101:301–310.

    Google Scholar 

  31. LLoyd Jones P, Crack M, Rabinovich M. Regulation of Tenascin-C, a vascular smooth muscle cell survival factor that interacts with the av?3 integrin to promote Epidermal Growth Factor receptor phosphorylation and growth. J Cell Biol 1997;139:279–293.

    Google Scholar 

  32. Lin CQ, Bissell MJ. Multi-faceted regulation of cell differentiation by extracellular matrix. FASEB J 1993;7:737–743.

    Google Scholar 

  33. Taipale J, Keski-Oja J. Growth factors in the extracellular matrix. FASEB J 1997;11:51–59.

    Google Scholar 

  34. Kardami E, Fandrich R. Basic fibroblast growth factor in atria and ventricles of vertebrates hearts. J Cell Biol 1989;109:1865–1875.

    Google Scholar 

  35. Corda S, Mebazaa A, Gandolfini MP, Fitting C, Marotte F, Peynet J, Charlemagne D, Cavaillon JM, Payen D, Rappaport L, Samuel JL. Trophic effect of human pericardial fluid on adult cardiac myocytes. Differential role of Fibroblast Growth factor-2 and factors related to ventricular hypertrophy. Circ Res 1997;81:679–687.

    Google Scholar 

  36. Kardami E, Liu L, Kishore S, Pasumarthi B, Doble BW, Cattini P. Regulation of basic fibroblast growth factor (bFGF) and FGF receptors in the heart. Ann N.Y Acad Sci 1995;752:353–369.

    Google Scholar 

  37. Cittadini A, Stromer H, Katz S, Clark R, Moses A, Morgan J, Douglas P. Differential cardiac effects of growth hormone and insulin-like growth factor-1 in the rat. A combined in vivo and in vitro evaluation. Circulation 1996;93:800–809.

    Google Scholar 

  38. Sporn M, Roberts B. Transforming Growth factor B: recent progresses and new challenges. J Cell Biol 1992;119:1017–1021.

    Google Scholar 

  39. Wilson E, Mai Q, Sudhir K, Weiss R, Ives H. Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF. J Cell Biol 1993;123:741–747.

    Google Scholar 

  40. Sudhir K, Wilson E, Chatterjee K, Ives HE. Mechanical strain and collagen potentiate mitogenic activity of angiotensin II in rat vascular smooth muscle cells. J Clin Invest 1993;92:3003–3007.

    Google Scholar 

  41. Schwartz MA, Lechene C. Adhesion is required for protein kinase C-dependent Na+/H+ antiporter by platelet-derived growth factor. Proc Natl Acad Sci USA 1992;89:6138–6141.

    Google Scholar 

  42. Butt RP, Laurent GJ, Bishop JE. Collagen production and replication by cardiac fibroblasts is enhanced in response to diverse classes of growth factors. Eur J Cell Biol 1995;68:330–335.

    Google Scholar 

  43. Schwartz SM, Heimark RL, Majesky MW. Developmental mechanisms underlying pathology of arteries. Physiol Rev 1990;70:1177–2209.

    Google Scholar 

  44. Borg TK, Raso DS, Terracio L. Potential role of the extracellular matrix in postseptation development of the heart. Ann N Y Acad Sci 1990;558:87–92.

    Google Scholar 

  45. Samuel JL, Farhadian F, Sabri A, Marotte F, Roberts V, Rappaport L. Expression of fibronectin during fetal aorta and postnatal development: an in situ hybridization and immunohistochemical study. Cardiovasc Res 1994;28:1653–1661.

    Google Scholar 

  46. Farhadian F, Barrieux A, Lortet S, Marotte F, Oliviero P, Rappaport L, Samuel JL. Differential splicing of fibronectin pre-messenger ribonucleic acid during cardiac ontogeny and development of hypertrophy in the rat. Lab Invest 1994;71:552–559.

    Google Scholar 

  47. George EL, Labouesse EN, Patelking RS, Raybum H, Hynes RO. Defects in mesoderm, neural tube, and vascular development in mouse embryos lacking fibronectin. Development 1993;119:1079–1091.

    Google Scholar 

  48. Dixon IMC, Ju H. The cardiac extracellular matrix during development. In: Ostadal B, Nagano M, Takeda N, Dhalla NS, eds. The developing heart. Philadelphia: Lippincott-Raven, 1997:81–90

    Google Scholar 

  49. Kim H, Yoon CS, Kim H, Rah B. Expression of extracellular matrix components fibronectin and laminin in the human fetal heart. Cell Struct Funct 1999;1:19–26.

    Google Scholar 

  50. Glukhova MA, Koteliansky V, Fondacci C, Marotte F, Rappaport L. Laminin variants and integrin laminin receptors in developing and adult human smooth muscle. Dev Biol 1993;157:437–447.

    Google Scholar 

  51. Glukhova MA, Thiery JP. Fibronectins and integrins in the development. Semin Cancer Biol 1993;4:241–249.

    Google Scholar 

  52. Giachelli C, Bae N, Lombardi D, Majesky M, Schwartz S. Molecular cloning and characterization of 2B7, a rat mRNA which distinguishes smooth muscle cell phenotypes in vitro and is identical to osteopontin (secreted phosphoprotein I, 2aR). Biochem Biophys Res Commun 1991;177:867–873.

    Google Scholar 

  53. MacLellan WR, Hawker J, Schneider MD. Myocardial growth factors. In: Marks AR, Taubman M, eds. Molecular biology of cardiovascular disease. New York: Marcel Dekker, 1997:327–377

    Google Scholar 

  54. Komuro I, Katoh Y, Kaida T, et al. Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytes. J Biol Chem 1991;266:1265–68.

    Google Scholar 

  55. Villareal FJ, Dillman WH. Cardiac hypertrophyinduced changes in mRNA levels for TGF?1, fibronectin and collagen. Am J Physiol 1992;262:H1861–1866.

    Google Scholar 

  56. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and the renin-angiotensin-aldosterone system. Circulation 1991;83:1849–1865.

    Google Scholar 

  57. Robert V, Silvestre J, Charlemagne D, Sabri A, Trouve P, Wassef M, Swynghedauw B, Delcayre C. Biological determinants of aldosterone-salt induced cardiac fibrosis in rat. Hypertension 1995;26:971–978.

    Google Scholar 

  58. Weber K, Sun Y, Tyagi S, Cleutjens J. Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. J Mol Cell Cardiol 1994;26:279–292.

    Google Scholar 

  59. Kanda K, Matsuda T. Mechanical stress-induced orientation and ultrastructural change of smooth muscle cells cultured in three-dimensional collagen lattices. Cell Transplant 1994;3:481–492.

    Google Scholar 

  60. Dartsch P, Hammerle H. Orientation response of arterial smooth muscle cells to mechanical stimulation. Eur J Cell Biol 1986;41:339–346.

    Google Scholar 

  61. Lehoux S, Tedgui A. Signal transduction of mechanical stresses in the vascular wall. Hypertension 1998;32:338–345.

    Google Scholar 

  62. Contard F, Sabri A, Gluckhova M, Sartore S, Marotte F, Pomies J, Schiavi P, Guez D, Samuel J, Rappaport L. Arterial smooth muscle cell phenotype in strokeprone spontaneously hypertensive rats. Hypertension 1993;22:665–676.

    Google Scholar 

  63. Takasaki I, Chobanian AV, Sarzani R, Brecher P. Effects of hypertension on fibronectin expression in the rat aorta. J Biol Chem 1990;265:21935–21939.

    Google Scholar 

  64. Saouaf R, Takasaki I, Eastman E, Chobanian AV, Brecher P. Fibronectin biosynthesis in the rat aorta in vitro. Changes due to experimental hypertension. J Clin Invest 1991;88:1182–1189.

    Google Scholar 

  65. Contard F, Koteliansky V, Marotte F, Dubus I, Rappaport L, Samuel JL. Specific alterations in the distribution of extracellular matrix components within rat myocardium during the development of pressure overload. Lab Invest 1991;64:65–75.

    Google Scholar 

  66. Samuel J, Barrieux A, Dufour S, Dubus I, Contard F, Koteliansky v, Marotte F, Thiery J, Rappaport L. Accumulation of fetal fibronectin mRNAs during the development of rat cardiac hypertrophy induced by pressure overload. J Clin Invest 1991;88:1737–1746.

    Google Scholar 

  67. Crawford DC, Chobanian AV, Brecher P. Angiotensin II induces fibronectin exporession associated with cardiac fibrosis in the rat. Circ Res 1994;74:727–739.

    Google Scholar 

  68. Farhadian F, Contard F, Sabri A, Samuel J, Rappaport L. Fibronectin and basement membrane in cardiovascular organogenesis and disease pathogenesis. Cardiovasc Res 1996;32:433–442.

    Google Scholar 

  69. Yamazaki T, Yazaki Y. Is there a major involvement of the Renin-Angiotensin system in cardiac hypertrophy? Circ Res 1997;81:639–642.

    Google Scholar 

  70. Dostal D, Baker K. Evidence for a role of an intracardiac renin angiotensin system in normal and failing hearts. Trends Cardiovasc Med 1993;3:12–17.

    Google Scholar 

  71. Baker KM, Booz, G W, Dostal DE. Cardiac actions of angiotensin II: role of an intracardiac renin-angiotensin system. Annu Rev Phys 1992;54:227–241.

    Google Scholar 

  72. Bardy N, Merval R, Benessiano J, Samuel J, Tedgui A. Pressure and angiotensin II synergistically induce aortic fibronectin expression in organ culture model of rabbit aorta. Circ Res 1996;79:70–78.

    Google Scholar 

  73. Dunn FW, Roux MH, Farhadian F, Sabri K, Ossart C, Samuel JL, Rappaport L, Hamon G. HR 720, a novel angiotensin receptor antagonist, inhibits the angiotensin II-induced trophic effects, fibronectin release and fibronectin-EIIIA+ expression in rat aortic vascular smooth muscle cells in vitro. J Pharmacol Exp Ther 1997;280:447–453.

    Google Scholar 

  74. Sabri A, Levy B, Poitevin P, Caputo L, Faggin E, Marotte F, Rappaport L, Samuel J. Differential roles of AT1 and AT2 receptor subtypes in vascular trophic response and phenotypic changes in response to stimulation with angiotensin II. Arteriosci Thromb Vase Biol 1997;17:257–264.

    Google Scholar 

  75. Matsubara H. Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal disease. Circ Res 1998;83:1182–1191.

    Google Scholar 

  76. Sil P, Sen S. Angiotensin II and myocyte growth. Role of fibroblasts. Hypertension 1997;30:209–216.

    Google Scholar 

  77. Gray MO, Long CS, Kalinyak J, Li HT, Karliner JS. Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF?-1 and endothelin-1 from fibroblasts. Cardiovasc Res 1998;40:352–363.

    Google Scholar 

  78. Imai T, Hirata Y, Emori T, Yanagisawa M, Masaki T, Marumo F. Induction of endothelin-1 gene by angiotensin and vasopressin in endothelial cells. Hypertension 1992;19:753–757.

    Google Scholar 

  79. Moreau P, d'Uscio LV, Shaw S, Takase H, Barton M, Luscher TF. Angiotensin increases tissue endothelin and induces vascular hypertrophy: reversal by ETA-receptor antagonist. Circulation 1997;96:1593–1597.

    Google Scholar 

  80. Lorell B. Transition from hypertrophy to failure. Circulation 1997;96:3824–3827.

    Google Scholar 

  81. Brilla C, Pick R, Tan L, Janicki J, Weber K. Remodeling of the right and left ventricles in experimental hypertension. Circ Res 1990;83:1849–1965.

    Google Scholar 

  82. Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev 1999;79:215–262.

    Google Scholar 

  83. Tamura K, Nyui N, Tamura N, Fujita T, Kihara M, Toya Y, Takasaki I, Takagi N, Ishii M, Oda K, Horiuchi M, Umemura S. Mechanism of angiotensin-mediated regulation of fibronectin gene in rat vascular smooth muscle cells. J Biol Chem 1998;273:26487–26496.

    Google Scholar 

  84. Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown E, Cuddy TE, Davis BR, Geltman EM, Goldman S, Flaker GC, on behalf of the SAVE investigators. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction: results of the Survival And Ventricular Enlargement trial. N Engl J Med 1992;327:669–677.

    Google Scholar 

  85. Nagasawa K, Zimmerman R, Munkel B, Linz W, Scholkens B, Schaper J. Extracellular matrix deposition in hypertensive hearts; antifibrotic effects of ramipril. Eur Heart J 1995;16:33–37.

    Google Scholar 

  86. Li JS, Sharifi A, Schiffrin E. Effect of AT1 angiotensinreceptor blockade on structure and function of small arteries in SHR. J Cardiovasc Pharmacol 1997;30:75–83.

    Google Scholar 

  87. Yu H, Gallagher AM, Garfin PM, Printz MP. Prostacyclin release by rat cardiac fibroblasts: inhibition of collagen expression. Hypertension 1997;30:1047–1053.

    Google Scholar 

  88. Sigusch HH, Campbell SE, Weber KT. Angiotensin IIinduced myocardial fibrosis in rats: role of nitric oxide, prostaglandins and bradykinin. Cardiovasc Res 1996;31:546–554.

    Google Scholar 

  89. Shioi T, Matsumori A, Kihara Y, Inoko M, Ono K, Iwanaga Y, Yamada T, Iwasaki A, Matsushima K, Sasayama S. Increased expression of Interleukin 1-? and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the hypertrophied and failing heart with pressure overload. Circ Res 1997;81:664–671.

    Google Scholar 

  90. Farivar RS, Chobanian AV, Brecher P. Salicylate or aspirin inhibits the induction of the inducible nitric oxide synthase in rat cardiac fibroblasts. Circ Res 1996;78:759–768.

    Google Scholar 

  91. Hou J, Kato H, Cohen RA, Chobanian AV, Brecher P. Angiotensin II-induced cardiac fibrosis in the rat is increased by chronic inhibition of nitric oxide synthase. J Clin Invest 1995;96:2469–2477.

    Google Scholar 

  92. Myers PR, Tanner MA. Vascular endothelial cell regulation of extracellular matrix collagen. Role of nitric oxide. Arterioscl Thromb Vasc Biol 1998;18:717–722.

    Google Scholar 

  93. Terracio L, Rubin K, D G, al. e. Expression of collagen binding integrins during cardiac development and hypertrophy. Circ Res 1991;68:734–744.

    Google Scholar 

  94. Sheppard AM, Onken MD, Rosen GD, Noakes PG, Dean DC. Expanding roles for ?4 integrin and its ligands in development. Cell Adhes Commun 1994;2:27–43.

    Google Scholar 

  95. Buck CA, Baldwin HS, DeLisser H. Cell adhesion receptors and early mammalian heart development: an overview. CR Acad Sci Lett 1993;316:849–859.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corda, S., Samuel, JL. & Rappaport, L. Extracellular Matrix and Growth Factors During Heart Growth. Heart Fail Rev 5, 119–130 (2000). https://doi.org/10.1023/A:1009806403194

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009806403194

Keywords

Navigation